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Neural Network Training

Luyang Fang, Cheng Meng, Lin Zhao, Tao Wang, Tianming Liu, Wenxuan Zhong*, and Ping Ma*

Abstract: Recent  advancements  in  deep  neural  networks  heavily  rely  on  large-scale  labeled  datasets.

However,  acquiring  annotations  for  large  datasets  can  be  challenging  due  to  annotation  constraints.  Active

learning offers a promising solution to this problem by selectively labeling a small, strategically chosen subset

of  the  unlabeled  dataset.  However,  current  active  learning  methods  struggle  with  data  that  are  unevenly

distributed,  which leads to the selection of  subsets that  fail  to represent the entire dataset.  To overcome this

challenge,  we  introduce  a  novel  active  learning  algorithm  that  integrates  SPace-filling  (SP)  designs  with  the

Optimal  Transport  (OT)  technique  (SPOT).  SPOT  technique  utilizes  optimal  transport  to  effectively  manage

data  from complex manifolds  by  mapping them to  a  uniformly  distributed hypercube.  Additionally,  the  space-

filling  design  ensures  a  better  asymptotic  convergence  rate,  ensuring  that  the  selected  subset  encompasses

the  entire  dataset  more  effectively  than  other  sampling  methods,  such  as  random  sampling.  Our  extensive

experiments  across  various  image  datasets  and  models  demonstrate  the  superiority  of  SPOT  over  existing

baselines.
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1　Introduction

Deep  Neural  Networks  (DNNs)  have  achieved
significant advancements in various domains, including
image recognition and natural language processing[1−6].
The  training  of  these  large-scale  DNNs  typically
requires  extensive  labeled  datasets.  For  example,  the
optimization  of  the  Vision  Transformer  relies  on  the

JFT-300M dataset, which contains 303 million labeled
samples[2].  However,  acquiring  annotations  for  such
extensive training sets presents challenges due to cost,
privacy,  and  the  need  for  specialized  expertise[7−9].
Active  Learning  (AL)  has  recently  emerged  as  a
promising  strategy  to  address  these  challenges  by
efficiently  selecting  a  subset  from  the  unlabeled  pool
for  annotation,  thereby  optimizing  the  construction  of
training datasets[10−13]. Unlike random sampling, which
regards  all  data  points  as  equally  important,  AL
assumes  some  unlabeled  data  points  are  more  critical
for  model  optimization.  The  goal  is  to  develop  a
learning  algorithm  that  can  identify  and  select  these
pivotal data points for annotation.

Current AL strategies for DNNs fall into two primary
categories:  uncertainty-based  and  diversity-based
methods.  Uncertainty-based  methods  focus  on
querying  data  points  with  high  uncertainty,  yet  they
risk selecting similar or duplicate samples. Conversely,
diversity-based  methods  aim  to  encompass  a
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comprehensive range of the sample space by selecting
data  points  that  maximize  diversity  based  on  their
distances. A notable approach within this category is to
select  a  subset  from a coreset  perspective[14, 15],  which
aims  to  represent  the  distribution  of  the  entire  dataset
effectively[16−18].  For  instance,  Savarese[16] addressed
the  coreset  selection  challenge  by  formulating  it  as  a
minimax-based -center  problem[19].  The  goal  here  is
to determine  center points that cover the entire space
by  minimizing  the  maximum  distance  between  any
data  point  and  the  center  point  closest  to  that  data
point.

However,  current  coreset-based  methods  exhibit
limitations  in  dealing  with  the  data  points  that  are
unevenly  distributed  on  the  sample  space,  primarily
because  these  methods  do  not  estimate  or  account  for
distribution  density.  For  example,  coreset-based
methods  tend  to  select  subsets  that  overly  represent
sparse areas in order to cover the entire sample space,
consequently  overlooking  substantial  information.  As
shown in Fig. 1a, points selected by the distance-based
methods,  represented  in  blue,  result  in  a  distorted
representation  of  the  original  dataset.  This  can  lead  to
subsets  that  do  not  accurately  reflect  the  original
dataset.  Furthermore, minimax or maximin[20] distance
designs are ineffective in projecting the selected design
points  onto  subspaces.  As  illustrated  in Fig.  1b,  the
representative  data  points  from  the  original  high-
dimensional  space  tend  to  cluster  and  overlap  when
projected  onto  subspaces,  leading  to  inefficient

resource  allocation  at  the  subspace  level.  Given  the
principle of effect sparsity[21], which suggests that only
a  few  dimensions  in  the  data  are  statistically
significant,  it  is  crucial  to  project  data  accurately  onto
subspaces  defined by these  key dimensions.  However,
since the significant factors are not known in advance,
ensuring  an  effective  projection  across  all  potential
subspaces is important.

To  address  the  aforementioned  limitations,  we
introduce a novel diversity-based AL algorithm, named
SPOT, which combines SPace-filling (SP) designs with
Optimal  Transport  (OT)  techniques.  OT
techniques[22−25] efficiently  manage  data  points
unevenly  distributed  on  complex  manifolds  by
mapping them onto a dataset uniformly distributed on a
hypercube.  This  transformation  relieves  the  difficulty
of selecting a representative subset on the manifold to a
more  manageable  task  of  choosing  a  subset  within  a
hypercube. To ensure the coverage of the design points
across  lower-dimensional  projections[21],  we  employ  a
space-filling  design  strategy  based  on  Maximum
Projection  (MaxPro)[26].  The  MaxPro  design
guarantees that the projection of selected design points
onto  any  subspace  maximizes  space-filling  properties,
effectively countering the impact of effect sparsity, and
thus  improving the  performance  and robustness  of  the
algorithm.

Furthermore,  in  scenarios  involving  the  fine-tuning
of  pre-trained  models,  the  unlabeled  data  pool  may
include data from classes that are not recognized by the
pre-trained  model.  In  such  instances,  it  is  critical  to
effectively  select  data  from both  known and unknown
classes  to  ensure  optimal  performance.  To  tackle  this
challenge,  we  introduce  a  re-weighting  strategy.  This
strategy  assigns  sampling  probabilities  that  reflect  not
only the distribution of the unlabeled pool, but also an
updated  distribution  incorporating  insights  from  the
labeled  data.  By  considering  both  distributions,  our
approach  enables  a  more  informed  and  effective
selection  of  data  from  both  known  and  unknown
classes, thereby enhancing overall model performance.

We  evaluate  the  SPOT  algorithm  on  three  different
datasets,  specifically  targeting  the  image  classification
task. The experimental findings demonstrate consistent
improvements  over  baseline  methods  across  these
varied  datasets  and  models.  In  summary,  the  key
contributions of our work are as follows:

●  We  introduce  a  novel  diversity-based  active
learning algorithm,  named SPOT, which integrates  SP
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Fig. 1    A toy example illustrating the limitations of current
coreset-based  methods  in  handling  data  points  that  are
unevenly  distributed  across  the  sample  space.  (a)  Unevenly
distributed  sample  space.  Distance-based  methods  tend  to
select  the  points  from the  sparse  areas  (e.g.,  blue  points)  to
cover  the  entire  space,  which  ignores  a  lot  of  information
(red  points).  (b)  Data  points  with  coreset  design.  When
projected  to  the  dimension,  20  points  are  collapsed  into
only  5  points  because  of  overlap.  (c)  Data  points  with
MaxPro  design.  In  total  9  points  are  kept  after  the
projection.

  Luyang Fang et al.:  SPOT: An Active Learning Algorithm for Efficient Deep Neural Network Training 1061

 



designs with the OT technique. OT efficiently handles
data  distributed  on  complex  manifolds,  while  SP
ensures  coverage  of  the  design  points  on  lower-
dimensional projections.

●  We  develop  a  re-weighting  strategy  designed  to
enhance  the  fine-tuning  performance  by  effectively
selecting  data  points  from  both  the  known  and
unknown classes of the pre-trained model.

●  We  conduct  comprehensive  experiments  across
various  datasets  and  models,  demonstrating  that  our
SPOT  algorithm  consistently  surpasses  the  baseline
methods.  These  results  provide  new  perspectives  and
insights into active learning methods.

2　Related Work

2.1　AL

AL  algorithms  are  generally  divided  into  three  main
categories:  stream-based  methods,  synthesis-based
methods,  and  pool-based  methods.  Stream-based  AL
methods[27−30] are  designed  to  quickly  decide  whether
to  query  incoming  instances  within  a  data  stream.
Synthesis-based  algorithms[31−33] generate  new
instances  for  querying,  rather  than  selecting  from  an
existing  dataset.  Pool-based  AL  methods  focus  on
selecting a specific number of unlabeled instances from
an  existing  pool  to  optimize  learning  accuracy.  Our
study  concentrates  on  pool-based  AL  methods,  which
are  particularly  relevant  for  DNNs that  have access  to
extensive  pools  of  unlabeled  data  but  limited  labeled
data.  In  such  scenarios,  the  importance  of  each  data
point  for  DNNs  can  be  assessed  using  two  main
approaches:  uncertainty-based  and  diversity-based
methods.

2.2　Uncertainty-based methods

Uncertainty-based  methods[34−43] aim  to  query  data
points with high uncertainty, which suggests that these
points are not effectively represented by the pre-trained
model.  For  example,  Shannon[35] selected  top-k
instances  with  the  highest  entropy  for  querying.
However,  these  methods  can  overlook  the  structural
information  of  the  unlabeled  data.  As  a  result,  data
points  belonging  to  the  same  category  often  receive
similar  uncertainty  scores  from  DNNs,  leading  to
sample  bias  and  the  selection  of  redundant  data
points[44, 45].

2.3　Diversity-based methods

This  paper  primarily  focuses  on  the  diversity-based

method,  which  distinguishes  itself  from  uncertainty-
based methods by emphasizing the selection of diverse
samples that cover the entire sample space, considering
distances  between  all  samples.  A  notable  example  of
this  approach  is  the  coreset  method,  which  selects  a
representative  subset  by  choosing  data  points  that
effectively approximate the full dataset’s diversity and
distribution  within  a  reduced  sample  space[16−18].
Despite  its  strengths,  there  are  situations  where  the
coreset  method  is  outperformed  by  uncertainty-based
methods[46].  One  possible  explanation  is  that  the
coreset method treats each data point equally within the
sample space, ignoring the inherent uneven distribution
of  data  across  a  complex,  high-dimensional  manifold.
Consequently, this method may favor points located in
sparse areas, potentially overlooking more critical data
points  in  order  to  achieve  effective  coverage.  Another
limitation  of  the  coreset  method  arises  from  the
projection of  high-dimensional  spaces,  which can lead
to  overlapping  points  in  low-dimensional  spaces,
resulting  in  information  loss  and  reduced
representativeness  of  the  sampled  points.  These
limitations  are  addressed  in  our  proposed  SPOT
framework,  which  enhances  the  effectiveness  of  the
coreset method.

3　Methodology

[0, 1]p p

[0, 1]p

We develop a novel AL algorithm named SPOT, which
integrates  the  space-filling  design  with  optimal
transport mapping to select a representative subsample.
SPOT  comprises  two  main  steps.  The  first  step
involves linking the feature space to the unit hypercube

,  where  is  the  dimension  of  data,  using  the
optimal transport technique, and enabling the mapping
of  data  points  from  the  complex  feature  space  to  a
hypercube.  In  the  second  step,  we  employ  a  space-
filling  strategy  to  select  the  representative  subsample
that  evenly  and  efficiently  covers  the  hypercube

. The workflow of SPOT is shown in Fig. 2.

3.1　Problem setup

Using a pre-trained model, an active learning algorithm
identifies  and  selects  the  most  informative  data  points
from  a  large  pool  of  unlabeled  data.  These  selected
data  points  are  then  labeled  by  experts.  The  newly
labeled data are subsequently used to update and refine
the model, resulting in enhanced performance.

M DU n
Mathematically,  consider  a  pre-trained  base  model
 and  an  unlabeled  pool  containing  unlabeled
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data  points,  denoted  as ,  where  each
 represents the -dimensional covariates of data

point .  The  objective  is  to  select  a  fixed-size  subset
 with  of  size  and  acquire

corresponding  labels .  This  subset  is  chosen  to
maximize  the  performance  of  model  when  fine-
tuned  on .  In  classification  tasks,  each  is  an
integer  from  set ,  representing  the  class
label,  where  denotes  the  number  of  classes.  In
regression problems,  is a real value.

3.2　SPOT algorithm

3.2.1　SP
Dl

DU

[0, 1]p

Dl

To  select  the  subset  that  can  best  represent  the
whole  dataset ,  we  prefer  data  points  that  spread
evenly  in  the  dataset  rather  than  cluster  together.  We
use  star  discrepancy,  a  commonly  employed  measure,
to  assess  the  deviation  of  a  given  point  set  from  the
uniform  distribution.  Assuming,  without  loss  of
generality, that the unlabeled data points are distributed
within  the  hypercube ,  our  goal  is  to  select  a
discrete  set  of  data  points, ,  which  has  the  lowest
discrepancy.

p [0, 1]p

[0, a) =
∏p

j=1[0, a j)
Ur = {ui}ri=1 r [0, 1]p

Given  a -dimensional  unit  hypercube ,  let
 be  a  hyper-rectangle  and

 be a set of  data points in , the star
discrepancy is defined as
 

D∗ (Ur) = sup
a∈[0, 1]p

∣∣∣∣∣∣∣∣1r
r∑

i=1

1 {ui ∈ [0, a)}−
p∏

j=1

a j

∣∣∣∣∣∣∣∣ (1)

Ur D∗

Ur

The  subset  that  minimizes  is  optimal  for
representing  the  hypercube  space  effectively.  Several
uniform  design  methods[47] have  been  proposed  to
generate  such .  However,  these  methods  are
computationally  intensive  and  challenging  to  apply  to

Ur

datasets  with  large  sample  sizes.  To  reduce  the
computational  load,  we  employ  space-filling  design
strategies[21, 48],  which  create  with  low  star
discrepancy.

[0, 1]p

ui u j

We  utilize  the  MaxPro,  a  space-filling  strategy,  to
select  a  representative subset  in .  MaxPro helps
avoid  the  suboptimal  projections  encountered  in
minimax or maximin distance designs, as illustrated in
Fig. 1a. In this approach, when data are projected onto
a subspace defined by several original dimensions, the
distance  between  points  and  is  calculated  using
the weighted Euclidean distance, defined as
 

d
(
ui, u j; δ

)
=

 p∑
l=1

δl
(
uil−u jl

)2


1/2

(2)

ui = (ui1, ui2, . . . , uip)T δ = {δ1, δ2, . . . , δp}T
i ∈ {1, 2, . . . , r} δl = 1 l

δl = 0
l ∈ {1, 2, . . . , p} Ur

where , ,
.  if  dimension  participating  in

forming  the  subspace,  otherwise  for
.  We  aim  to  select  a  subset  that

minimizes  the  projection  error  across  all  subspaces,
defined as
 

E {ϕk (Ur; δ)} =
w

Sp−1

n−1∑
i=1

n∑
j=i+1

1

dk
(
ui, u j; δ

) p (δ) dδ (3)

Sp−1 =
{
θ: δ1, δ2, . . . , δp−1 ⩾ 0,

∑p−1
i=1 δi ⩽ 1

}
k > 0
where ,  and

 is a constant. This ensures optimal representation
in each considered subspace. We refer to Ref. [26] for
more details.

Ur [0, 1]p

DU XU

[0, 1]p

We propose Algorithm 1 to select the representative
subset  within  the  unit  hypercube .  This
approach  integrates  the  space-filling  design  with  a  1-
nearest  neighbor  method  similar  to  that  of  Zhang  et
al.[49] First,  we  scale  the  original  sample  to ,
ensuring  it  is  distributed  within .  We  then
generate  MaxPro  design  points  within  this  space.  For

 

Feature space

OT

Hypercube Design points

Subset

SP
Inputs

Pre-trained
model

Embedding/
Feature extraction

 
Fig. 2    Workflow of the SPOT algorithm. The inputs are first embedded into the feature space, after which they are mapped
into  a  hypercube  via  the  optimal  transport  technique.  A  space-filling  strategy  is  then  applied  to  select  the  representative
subsample (red points) within the hypercube.
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x j ∈ XU x j

each  design  point,  denoted  as ,  we  identify
its nearest neighbor . This neighboring point 
is the data point we select to fine-tune the model.
3.2.2　OT

DU = {z j ∈ Rp}rj=1For any , Algorithm 1 can be applied
following  a  simple  scaling  step.  Nonetheless,
challenges  arise  when  the  data  points  are  non-
uniformly  distributed  across  the  sample  space.
Employing  the  MaxPro  space-filling  design  method
under  these  conditions  often  leads  to  suboptimal
outcomes. Firstly, as illustrated in Fig. 3a, Algorithm 1
tends  to  select  the  subset  that  overly  represents  data
points from sparse areas. Secondly, for data points that
are  non-uniformly  distributed  in  the  sample  space,
utilizing a uniformly distributed space-filling design set
to  locate  the  nearest  neighbor  may  not  be  reasonable.
This  is  because  even  its  nearest  neighbor  can  still  be
significantly distant, making this approach ineffective.

DU

[0, 1]p

We  apply  the  OT  technique[22, 50] to  transfer  the
dataset ,  which  is  unevenly  distributed  on  a
complex manifold, into a uniformly distributed dataset
within  a  unit  hypercube .  The  transformation

simplifies  the  challenging  task  of  selecting  a
representative  subset  from  the  manifold  to  selecting
one  from  a  dataset  uniformly  distributed  in  a
hypercube.  Consequently,  the  effectiveness  of
Algorithm 1 is fully demonstrated, as shown in Fig. 3b.
We  observe  that  the  selected  data  points  are  more
concentrated to the true distribution, and it is robust to
this non-uniformly distribution with outliers.

µ

X ∈ Rp ν

Y = [0, 1]p

T : X→Y µ ∈ P (X)
ν ∈ P (Y) P (·) T

Assume  is  the  probability  measure  on  space
, the domain of the random variable, and  is the

uniform  probability  measure  on .  Let
 be  a  transport  map that  transports 

to , where  is the set of probabilities.  is
defined as
 

ν (B) = µ
(
T−1(B)

)
(4)

ν B
ν = T#µ

µ ν

c: X×Y→ [0, +∞] c (x, y)

x ∈ X y ∈ Y
T ∗

for  all -measurable  sets .  As  shorthand  we  write
 if Eq. (4) is satisfied. The focus is primarily on

the  cost  of  transporting  to .  Specifically,  let
 be  a  cost  function,  where 

measures the cost of transporting one unit of mass from
 to .  The  objective  is  to  search  the  optimal

transport map  that minimizes
 

h (T ) =
w

X
c (x, T (x)) dµ (x) (5)

µ T : X→Y ν = T#µover -measurable maps  subject to .

[0, 1]p Un = {ui}ni=1
[0, 1]p

T ∗ Un

p

Ur

Ur T ∗

M

To  obtain  the  desired  optimal  transport  map  that
maps  the  observed  sample  to  be  uniformly  distributed
on ,  a  synthetic  sample, ,  uniformly
distributed  on  is  first  generated.  Subsequently,

,  mapping  from  the  observed  sample  to  is
calculated.  This  mapping  can  be  approximated  using
projection-based  methods[25, 51],  which  simplify  the
estimation  of  a -dimensional  optimal  transport  map
by addressing it through a sequence of one-dimensional
subproblems.  These  subproblems,  involving  the
calculation of one-dimensional  optimal transport  maps
between  projected  samples,  are  readily  solved  using
sorting  algorithms.  The  set  is  then  selected
according  to  Eq.  (1)  based  on  space-filling  designs.
The  observed  samples  transported  to  by  form
the  targeted  subsample.  This  procedure  is  outlined  in
Algorithm  2.  The  selected  subset  is  subsequently
annotated with expert knowledge and utilized to refine
the current model .

We  further  illustrate  Algorithm  2  using  a  toy
example as  shown in Fig.  4.  We generate  two distinct
classes  of  random  samples,  each  consisting  of
3000  points.  The  first  class  is  sampled  from  a
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Fig. 3    Power  of  OT  on  the  unevenly  distributed  sample
(grey  points).  The  points  from  the  sparse  areas  are
considered  as  outliers  (circled  in  blue).  (a)  Subset  (red
points)  selected  by  applying  Algorithm  1  directly,  and  (b)
subset  (red  points)  selected  by  applying  Algorithm  1  after
the optimal transport method.

    1064 Big Data Mining and Analytics, October 2025, 8(5): 1060−1074

 



N
((

a · sin (2a)
a · cos (2a)

)
,

(
0.42 0

0 0.42

))
a ∼ Unif (0, 2π)

N
((

5
5

)
,

(
1 0
0 1

))
[0, 1]2

normal distribution ,

where ,  and  the  second  from

, as displayed in Fig. 4a. Following
this,  we  map  the  generated  data  to  a  synthetic  dataset
uniformly  distributed  on  as  per  Step  2  in
Algorithm  2. Figure  4b  confirms  that  data  from  the
same  class  remain  spatially  close  even  after  the  OT
step,  validating  the  logic  of  the  subsequent  space-
filling  selection  procedure.  The  SP  design  points  are
marked in red in Fig. 4c. The subsample corresponding
to  these  design  points,  marked in  red  in Fig.  4d,  form
the desired subsample.

3.2.3　Down-weight

DL
0

DU

DL
0

Algorithm 2 is designed to select a small subset of data
that  effectively represents  the entire  unlabeled dataset.
This  is  particularly  useful  when  the  unlabeled  data
comes  from  classes  that  differ  from  those  in  the  base
dataset ,  which  is  used  to  train  the  base  model.
However, in practice,  may also contain data points
belonging  to  the  same  classes  as ,  which  the  base
model  already  distinguishes  well.  In  these  cases,  we
prefer  to  reduce  the  probability  of  selecting  such  data
points.  To  address  this  issue,  we  introduce  a  down-
weighting method that adjusts the input to our selection
procedure.

DU = {zi ∈ Rp}ni=1 CU
1 =

{z j : j ∈ I1} CU
2 = {zk : k ∈ I2} I1∪ I2 =

{1, 2, . . . , n} I1∩ I2 = ∅ |I1| = m1 |I2| = m2

CU
1
DL

0 = {xi}Ni=1
N DL

0
CU

1 CU
2 DL

0 π1 j

j ∈ I1 π2k k ∈ I2 π0i i = 1, 2, . . . , N

To  illustrate  our  method,  consider  a  scenario
involving  two  classes.  Assume  the  unlabeled  dataset

 contains  two  classes: 
 and ,  where 

, , ,  and .
Furthermore,  suppose  that  contains  the  same
classes  as  the  base  labeled  dataset ,  where

 is  the  sample  size  of .  We  denote  the  sampling
probabilities for data points in , , and  by 
(for ),  (for ), and  (for ),
respectively.

DL
0

According  to  the  principle  of  OT  and  SP,  the
proportion  of  the  selected  subset  from  each  class
should be proportional to the sample size of each class.
Therefore, when incorporating the base dataset , the
probability of selecting each data point into the subset
is given by
 

π̂0i =
n

n+m1+m2
× π0i

n∑
i=1
π0i+

m1∑
i=1
π1i

(6)

 

π̂1 j =
m1

n+m1+m2
×

π1 j
n∑

i=1
π0i+

m1∑
i=1
π1i

(7)

 

π̂2k =
m2

n+m1+m2
× π2k

m2∑
i=1
π2i

(8)

π̂0i π̂1 j π̂2k

DL
0 CU

1 CU
2

where , , and  represent the adjusted sampling
probability  for  each  data  point  in , ,  and ,
respectively.  Without  including  the  base  dataset,  the
adjusted probabilities are as follows:
 

π̃1 j =
m1

m1+m2
×
π1 j

m1∑
i=1
π1i

(9)

 

 

Algorithm 2　Naive-SPOT algorithm
DU DL rInput: , , and budget 

Un = {ui}ni=1
[0, 1]p

Step  1: Generate  a  synthetic  sample  uniformly
distributed on the unit hypercube ;

T ∗

DU = {zi ∈ Rp}ni=1 Un

{T ∗(zi)}ni=1

Step  2: Calculate  the  optimal  transport  map  that  maps
 to ,  denote  the  transformed  sample  as

;

{u j}rj=1
Un r

Step 3: Generate the MaxPro space-filling design points  =
SP ( , );

Dl = {z j}rj=1 {u j}rk=1
T ∗
Step 4: Achieve  the  subset  mapped  to  by

;
DlOutput: Selected subset 
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Fig. 4    Toy  example  of  the  proposed  SPOT  algorithm.  (a)
Original  data  consisting  of  two  classes,  distinguished  by
different colors, (b) optimal transport maps the original data
to  the  synthetic  data  uniformly  distributed  on  the  2D  unit
hypercube ,  (c)  generated  space-filling  design  points
(red  points)  covering  the  unit  hypercube ,  and  (d)
subset  of  the  original  data  (red  points)  mapped  to  the
selected synthetic data.
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π̃2k =
m2

m1+m2
× π2k

m2∑
i=1
π2i

(10)

z j ∈ CU
1 zk ∈ CU

2For  any  and ,  without  the  base
dataset, the ratio of the selection probability is given by
 

k0 =
π̂1 j

π̂2k
=

π1 j
m2∑
i=1
π2i

π2k
∑m1

i=1 π1i
(11)

However, when including the base dataset, this ratio
becomes
 

k1 =
π̃1 j

π̃2k
=

π1 j
m2∑
i=1
π2i

π2k

(
n∑

i=1
π0i+

m1∑
i=1
π1i

) (12)

k0which  is  lower  than .  Thus,  we  effectively  decrease
the  probability  of  selecting  data  points  from  classes
that are already well represented. Further details of this
method  under  general  conditions  are  outlined  in  the
Algorithm 3.

DL
0

In  the  first  step  of  the  SPOT  Algorithm  3,  simple
random  sampling  is  employed  to  select  a  subset  from
the  labeled  base  dataset, .  To  enhance  the
performance  of  the  SPOT  algorithm,  the  potential  for
incorporating  more  advanced  sampling
techniques[52−54] can be further investigated.

4　Experiment

This  section  provides  an  overview of  the  datasets  and
algorithms  to  be  employed  in  our  experiments,
followed  by  an  experimental  analysis.  We  perform  a
thorough  evaluation  of  SPOT  across  multiple
classification  tasks  utilizing  various  models.
Furthermore,  we  conduct  a  sensitivity  analysis  to

assess  the  effects  of  several  critical  parameters  on  the
performance of the SPOT algorithm.

4.1　Baselines

To  validate  the  performance  of  our  approach,  we
compare it against a number of baselines:

Dl● Coreset: Selecting  the  subset  using  the K-
center  algorithm (K is  equal  to  the  budget)  developed
in Sener and Savarese[16].

● Batch  Active  learning  by  Diverse  Gradient
Embeddings  (BADGE): A  sampling  strategy  that
incorporates  both  predictive  uncertainty  and  sample
diversity, as proposed by Ash et al.[55]

DU K K

Dl

● K-means: Partitioning  into  clusters  (  is
equal  to  the  budget)  according  to  Sculley[56] and  take
the cluster centroids as .

Dl

DU
● Random: Selecting  the  subset  uniformly  at

random from .
Dl

M
● Least Confidence (LC) : Selecting  for which

the  pre-trained  model  is  least  confident  in  class
assignment.

● Active  Learning  By  Learning  (ALBL): A
bandit-style meta-active learning algorithm that selects
between Coreset and LC at every round[57].

● Generalized Empirical F-Discrepancy (GEFD):
It  is  a  low  GEFD  data-driven  subsampling  method
according to Zhang et al.[58]

4.2　Size of the budget

r

DU

Different from many previous AL studies that allocate
a  large  budget  for  their  experiments,  we  focus  on  the
scenarios  where  budget  is  very  limited.  This  focus
mirrors  situations  where  labeling  is  extremely
expensive, as is often the case in fields such as medical
imaging.  Specifically,  for  the  situation  that 
contains tens of thousands of data points,  we limit  the
size of the budget to the order of tens, i.e., the few-shot
scenario[59, 60].

4.3　Dataset

11
4

Agri-ImageNet: The  Agri-ImageNet  dataset[61]

contains  two  parent  classes  including  fruits  (with 
sub-classes) and vegetables (with  sub-classes).

60 000
10 000

MNIST:  MNIST[62] is a dataset of handwritten digit
images  with  a  training  set  of  examples  and  a
test set of  examples. Each example is a 28 pixel ×
28 pixel grayscale image, associated with a label of 10
classes.

 

Algorithm 3　SPOT algorithm

DU DL
0 rInput: , , and budget 

DL
sub DL

0
DU

Step 1: Randomly select a subset  from  with the size of
the sample order with ;

Dnew =DU ∪DL
subStep 2: Form ;

DnewStep  3: Pass  into  the  Naive-SPOT  algorithm  to  select  a
subset for labeling:

Dl = Naive-SPOT (Dnew, r)　　　　　 ,

DL
0　　•  If  the  selected  subset  contains  samples  from ,  no

　　 budget is used for these alreadylabeled data points;
　　•  The  saved  budget  can  either  be  preserved  or  used  to
　　 annotate additional samples;

DlOutput: Selected subset 
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50 000 10 000
CIFAR-10: The  CIFAR-10  dataset[63] consists  of  a

training set of  examples and a test set of 
examples.  Each example in the dataset  is  a  32 pixel  ×
32  pixel  color  image,  spanning  10  different  classes  of
objects  such  as  animals  and  vehicles.  These  classes
include  airplanes,  cars,  birds,  cats,  deer,  dogs,  frogs,
horses,  ships,  and  trucks,  each  equally  represented  in
the dataset.

4.4　Implementation details

We  briefly  introduce  some  important  implementation
details of our experiments. Detailed information of our
experiments are presented in the Appendix.

M

m1 m2

DL
o DU n1

n2 DL
o DU

Dataset  settings: For  all  datasets,  we  randomly
separate  them  into  the  base  dataset  and  the  novel
dataset. Model  is pre-trained on the base set, and the
active learning algorithms are applied to the novel set.
The  base  dataset  is  randomly  divided  into  training
(80%)  and  test  (20%)  splits.  For  the  novel  dataset,  all
samples  except  those  actively  selected  for  fine-tuning
are  used  as  the  test  split.  Image  pre-processing  steps
are  also  applied.  Specifically,  for  the  training  dataset,
Rand-Augment[64],  Random  Erasing[65],  and
RandomResizeCrop are applied for data augmentation.
For the test dataset, images are only resized and center-
cropped.  In Table  1,  we  list  some  basic  information
about  the  three  datasets,  where  and  denote  the
numbers of classes in  and , respectively,  and

 denote  the  numbers  of  images  in  and ,
respectively.

Model  settings: We  consider  two  different  model
structures.  For  Agri-ImageNet  and  CIFAR-10  dataset,
we apply the Vision Transformer (ViT)[2] model in the
experiments.  The  ImageNet-1k  pre-trained  model  is
firstly trained on the base dataset with the vanilla ViT.
We adopt an AdamW optimizer with 300 epochs using
a cosine decay learning rate scheduler and 5 epochs of
linear  warm-up.  For  the  MNIST  dataset,  a
Convolutional  Neural  Network  (CNN)  with  two
sequential  layers  and  one  fully  connected  layer  is
applied.

Feature extraction: For the distance-based methods
(Coreset  and  K-means),  we  follow  the  instructions  in

l2

Dl

Ref. [16] to define the distance metric. Specifically, we
use  the  distance  between  the  final  fully  connected
layers  as  the  distance.  For  SPOT,  since  the  properties
of space-filling designs are restricted to a relatively low
dimension, we further apply a simple Autoencoder and
Principal  Component  Analysis  (PCA)  step  to  reduce
the  dimension.  This  feature  extraction  procedure  is
solely used for selecting  and will not be applied in
the subsequent model fine-tuning step.

For  all  the  active  learning  algorithms  with
randomness, we run them with three random seeds and
use the median accuracy as a metric.

4.5　Results

r

r = 50

Figures  5−7 show  the  results  of  classification
accuracies  versus  different  budget .  Three  significant
observations can be made from these results. First, it is
observed  that  as  the  budget  increases,  the  accuracy  of
all  methods  generally  exhibits  an  upward  trend.
Although  there  may  be  slight  drops  in  accuracy  at
certain  points,  such  as  when  for  the  SPOT

 

Table 1    Datasets used in the experiments.
Dataset m1 m2 n1 n2 Model

CIFAR-10 7 6 30 500 19 500 ViT
Agri-ImageNet 3 8 3149 1491 ViT

MNIST 7 6 36 781 23 219 CNN
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Fig. 5    Image  classification  accuracy  given  the  budgets
(number of training samples) on the CIFAR-10 dataset with
the ViT model.
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Fig. 6    Image  classification  accuracy  given  the  budgets
(number of  training samples)  on the Agri-ImageNet dataset
with the ViT model.
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algorithm, the overall  trend remains positive.  Notably,
the proposed SPOT algorithm consistently outperforms
the other methods for both datasets in most cases with
a few exceptions that GEFD achieves marginally better
accuracies.  These  findings  align  with  the  statements
and  demonstrations  provided  in  the  methodology
section  and  the  accompanying  toy  examples.  They
reinforce  the  notion  that  the  subset  selected  by  the
SPOT algorithm better represents the observed sample
space  compared  to  the  subsets  selected  by  the  other
four methods.

100

Second,  we  note  that  even  with  a  significantly
limited  budget  (specifically,  a  budget  controlled  to  be
under ),  DNNs can still  achieve good performance
by  taking  advantage  of  active  learning  algorithms.
Utilizing  the  SPOT  algorithm,  the  classification
accuracy  on  both  datasets  reaches  0.7.  This  highlights
the efficacy of SPOT in maximizing performance even
under resource constraints.

O
(
log (r)p/r

)

Third,  we  observe  that  the  accuracy  of  all  methods
gradually  approaches  a  fixed  value,  differing  only  in
their  convergence  rates.  This  behavior  is  expected
since,  as  the  training  sample  size  increases,  the
distinctions  between  various  active  learning  methods
diminish until they become negligible. For instance, the
convergence  rate  of  the  star  discrepancy  for  space-
filling design points is of the order , while

O (log (log (r))/
√

r)
O

(
log (r)p/r

)
r

r

the convergence rate for uniformly random sampling is
of  the  order [66],  which  is
significantly  slower  than .  However,  as
the  budget  goes  to  infinity,  even  uniformly  random
sampling  will  perform  well.  One  exception  is  the
performance  of  the  entropy-based  method  LC  in  the
Agri-ImageNet  dataset.  As  increases,  its  accuracy
barely  changes.  This  may  be  due  to  DNNs  giving
similar  uncertainty  estimates  to  the  data  points
belonging to the same class.

4.6　Computational time

Dl

Although  the  expensive  labeling  procedure  constitutes
a  significant  cost  in  active  learning  algorithms,  it  is
also  essential  to  consider  the  computational  time
required  by  the  proposed  SPOT  algorithm.  Typically,
the  pre-trained  model  used  in  active  learning  is  not
counted  as  part  of  the  computational  cost,  since  it  is
trained  on  large  benchmark  datasets  like  ImageNet.
Thus,  the  computational  time  for  the  model-building
procedure consists of two main steps: (1) selecting the
subset  for  annotation,  and  (2)  the  fine-tuning
process  to  adapt  the  pre-trained  model  to  the  novel
dataset.  The  subset  selection  step  is  performed  on  a
Mac  with  a  10-Core  M1  Max  processor  and  32  GB
memory,  utilizing  the  CPU.  On  the  other  hand,  the
fine-tuning  process  is  executed  on  an  NVIDIA  Tesla
V100  Tensor  Core.  We  list  the  computational  time  of
Step 1 in Table 2 and the computational time for Step 2
in Table 3.

Table  2 shows  that  the  computational  time  required
by  different  subset  selection  methods  varies  greatly,
but overall time for this step can usually be completed
within  several  minutes.  A  running  time  of  zero  here
indicates  that  the  execution  is  completed  in  less  than
one  second.  While  the  fine-tuning  step  is  more  time-
consuming,  requiring  several  hours  to  fine-tune  the
ViT model.

4.7　Parameter sensitivity

To assess the impact of parameterization changes in the
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Fig. 7    Image  classification  accuracy  given  the  budgets
(number of training samples) on the MNIST dataset with the
CNN model.

 

Table 2    Median computational time for subset selection.
(s)

Dataset
Method

SPOT Coreset K-means Random LC ALBL BADGE GEFD
Agri-ImageNet 23 50 416 0 119 201 223 1

MNIST 174 6 1300 0 39 205 556 0
CIFAR-10 132 83 1081 0 54 371 368 1
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p

p

dimension  reduction  phase  on  classification
performance,  we  conduct  experiments  using  the
CIFAR-10 dataset. Specifically, we analyze the effects
of  modifying  the  number  of  the  first  principal
components,  i.e.,  the  dimension .  The  results,  as
depicted  in Fig.  8,  consistently  demonstrate  stable
classification  performance  across  various  values  of .
This  finding  suggests  that  the  performance  remains
robust and unaffected by changes in the specific values
of .  More  details  of  this  part  can  be  found  in  the
Appendix.

4.8　Ablation study

r

We  conduct  experiments  to  assess  the  influence  of
space-filling  designs  and  OT  individually.  Using  the
MNIST dataset as an example, we compare SPOT with
the following methods:  (1)  OT,  which applies  optimal
transport  with  a  simple  random  Latin  hypercube
design[67] instead of the proposed MaxPro space-filling
design;  and  (2)  SP,  which  uses  the  MaxPro  space-
filling  design  without  OT. Figure  9 shows  the
classification  accuracies  of  these  three  methods  at
varying  budget  levels .  The  results  demonstrate  that
SPOT  consistently  achieves  higher  classification
accuracy  compared  to  both  OT  and  SP,  with  the
performance gap increasing at higher budget levels.

5　Conclusion and Discussion

In  this  paper,  we  introduce  a  novel  active  learning
framework  that  combines  SP  designs  and  OT  to
effectively select representative subsets that capture the
underlying  distribution  of  the  entire  dataset.  In
particular,  our  design  remedies  the  limitations  in
coreset-based  methods  from  the  uneven  distribution
density  of  data  points  and  ineffective  projection  onto
sub-spaces.  Through  extensive  experiments  on  three
diverse datasets using various models, we demonstrate
the  superiority  of  our  proposed  methods  compared  to
the  baseline  approaches.  The  results  highlight  the
effectiveness and robustness of our framework. As part
of  our  future  work,  we  aim  to  apply  the  SPOT
framework  to  other  scenarios,  including  medical
imaging applications and other data modalities such as
text,  time  series,  and  videos.  This  will  allow  us  to
explore  the  potential  benefits  and  practicality  of  our
approach in broader domains.

O
(
n3 log (n)

)
O

(
n2 · p

)
n p

The computational cost of SPOT depends on both the
OT  step  and  the  SP  step.  Traditional  linear
programming algorithms for solving OT problems have
a  computational  complexity  of .
Additionally, the MaxPro design step has a complexity
of ,  where  is  the  sample  size  and  is  the

 

Table 3    Median computational time for fine-tuning.
(h)

Dataset
Method

SPOT Coreset K-means Random LC ALBL BADGE GEFD

Agri-ImageNet 11.57 12.25 14.55 11.38 14.37 19.07 19.06 16.52

MNIST 0.17 0.18 0.15 0.18 0.08 0.07 0.13 0.12

CIFAR-10 3.08 3.89 3.43 3.05 2.55 1.71 3.51 3.20
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Fig. 8    Results  of  the  parameter  sensitivity  test  for  the
dimension reduction part.
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Fig. 9    Image  classification  accuracy  given  the  budgets
(number of training samples) on the MNIST dataset.
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(
n2 log (n)

)
n ≈ 104

n ≈ 106

data  dimension.  For  large-scale  datasets,  such  as
medical  imaging  data,  the  high  computational  cost  of
OT  poses  a  significant  challenge  to  implementing
SPOT.  Fortunately,  efficient  OT  algorithms,  such  as
the  Sinkhorn  algorithm,  have  been  developed  to
significantly  reduce  computational  time.  Empirical
studies demonstrate that the Sinkhorn algorithm, with a
complexity  of ,  can  solve  OT  problems
reliably  and  efficiently  for  datasets  with [24].
Furthermore,  under  sparsity  assumptions,  the
computational  cost  can  be  further  reduced,  with
efficiency  demonstrated  on  datasets  as  large  as

[68]. Thus, the SPOT algorithm remains feasible
and  practical  for  most  applications,  even  with  large-
scale datasets.

Appendix

In this section, we provide detailed information of our
experiments.

A1　Dataset Setting

A1.1　Splitting the dataset
We  partition  each  dataset  into  two  subsets:  the  base
dataset and the novel dataset. The pre-trained model is
trained using the base dataset, while the active learning
algorithm is applied to the novel dataset. In the case of
the  CIFAR-10  and  MNIST  datasets,  the  novel  dataset
comprises  both  classes  that  are  already  present  in  the
base dataset and additional classes that are not included
in the base dataset.  For  the Agri-ImageNet dataset,  all
the classes in the novel dataset are entirely new.

CIFAR-10: We design all data samples belonging to
four  classes  (airplane,  automobile,  bird,  and  cat)  and
randomly  allocate  70% of  the  data  from  three  classes
(deer,  dog,  and  frog)  to  form  the  base  dataset.
Subsequently,  we  assign  the  remaining  30% of  the
three  classes  (deer,  dog,  and  frog)  along  with  all  data
samples  from  three  classes  (horse,  ship,  and  truck)  as
the novel dataset.

Agri-ImageNet: The  base  dataset  contains  three
classes  (Chinee  apple,  maize,  and  tomato),  while  the
novel  dataset  contains  12  classes  (apple,  fuji  apple,
golden  delicious  apple,  melrose  apple,  apple  tree,
avocado, capsicum, lettuce, mango, orange, rockmelon,
and strawberry).

MNIST: Similar to the CIFAR-10 dataset, we set all
data from four classes (digit 0−3) and randomly select
70% of  the  data  from  three  classes  (digit  4−6)  as  the
base dataset. We then set the rest of the data, i.e. 30%

of  three  classes  (digit  4−6)  and  all  data  from  three
classes (digit 7−9), as the novel dataset.
A1.2　Dataset settings
For all datasets, the base dataset is randomly split into
training  and  testing  subsets  with  an  80%/20% ratio.
The novel dataset’s test split  consists of the remaining
data  after  excluding  the  actively  selected  few-shot
samples.  Image  preprocessing  steps  are  applied  as
follows:  for  the  training  dataset,  data  augmentation
techniques,  such  as  Rand-Augment[64],  Random
Erasing[65],  and  RandomResizeCrop,  are  applied.
Specifically,  images  are  resized  and  cropped  to  32
pixel  × 32 pixel  for  CIFAR-10,  224 pixel  × 224 pixel
for Agri-ImageNet, and 28 pixel × 28 pixel for MNIST.
For  the test  dataset,  images undergo only resizing and
center-cropping  to  32  pixel  ×  32  pixel  (CIFAR-10),
224 pixel × 224 pixel (Agri-ImageNet), and 28 pixel ×
28 pixel (MNIST).

A2　Model Setting

300
5

200

ViT model for CIFAR10: We use the ViT[2] model in
the experiments. The ImageNet-1k pre-trained model is
firstly trained on the base dataset with the vanilla ViT.
We adopt an AdamW optimizer with  epochs using
a cosine decay learning rate scheduler and  epochs of
linear  warm-up.  Then,  we  fine-tune  the  model  on  the
few-shot  samples  in  the  novel  dataset.  We  keep  the
same settings of regular training except for the epochs
to .

100
5

ViT  model  for  Agri-ImageNet: We  use  the  ViT[2]

model  in  the  experiments.  The  ImageNet-1k  pre-
trained model is firstly trained on the base dataset with
the  vanilla  ViT.  We  adopt  an  AdamW optimizer  with

 epochs  using  a  cosine  decay  learning  rate
scheduler  and  epochs  of  linear  warm-up.  Then,  we
fine-tune  the  model  on  the  few-shot  samples  in  the
novel  dataset.  We  keep  the  same  settings  as  regular
training.

100 5

300

CNN model  for  MNIST: We use  a  CNN with  two
sequential layers and three fully connected layers. The
CNN  model  is  first  trained  on  the  base  dataset.  We
adopt  an  Adam  optimizer  with  epochs  and 
epochs  of  linear  warm-up.  Then,  we  fine-tune  the
model  on  the  few-shot  samples  in  the  novel  dataset.
We  keep  the  same  settings  of  regular  training  except
for the epochs to .

A3　Feature Extraction

For particularly high-dimensional data such as images,
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they are  not  reliable  or  even feasible  for  us  to  use  the
original  high-dimensional  data  for  analysis.  Thus,  a
feature extraction step, which has the ability to extract
low-dimensional  features  that  can  preserve  the  most
relevant  information  from  the  original  dataset  and
discard  the  redundant  information,  is  desired  before
applying  the  active  learning  algorithms.  For  the
classification  problems,  since  the  pre-trained  model
itself  has  the  ability  to  extract  important  features
required to distinguish classes, we take advantage of it
to finish the feature extraction step.

l2

ViT model: For the distance-based methods (Coreset
and  KNN),  we  follow  the  instruction  in  Ref.  [16]  to
extract  the  low-dimensional  feature  and  define  the
distance metric. Specifically, take the output of the last
block of the ViT model as the image features, and use
the  distance as the distance metric. For SPOT, since
the properties of space-filling designs are restricted to a
relatively  low  dimension,  we  further  apply  a  simple
Autoencoder  with  a  three-layer  encoder  and  a  three-
layer  decoder  to  reduce  the  dimension.  The  principal
component analysis is applied when needed.

l2

CNN  model: For  the  distance-based  methods
(Coreset  and  KNN),  we  take  the  output  of  the  second
fully  connected  layer  of  the  CNN model  as  the  image
features, and use the  distance as the distance metric.
For SPOT, we use the principal component analysis to
reduce the dimension further when needed.

A4　Parameter Sensitivity

d

p

In  order  to  evaluate  the  robustness  of  the  proposed
SPOT algorithm over  the parameters  in  the dimension
reduction step, we take the benchmark dataset CIFAR-
10 as an example to conduct experiments. Specifically,
we test the influence of (1) the number of nodes  for
the  latent  layer  in  autoencoder,  and  (2)  the  number  of
principal components  used in PCA.

p 6 d
50 100 150 d

d

d

Specifically, we first fix  to be  and vary  among
, , and  to explore the influence of . Results

are shown in Fig. A1. We observe that the overall trend
of accuracy is upward as the shot size increases for all
scenarios.  For  different ,  the  increase  in  accuracy  of
the  proposed  SPOT  algorithm  is  stable,  while  the
increase  of  the  random  sampling  method  fluctuates
greatly.  Moreover,  the  performance  of  the  proposed
SPOT algorithm is  stable  across  different  values  of ,
and  outperforms  the  random  sampling  algorithm  for
almost all scenarios.

d 100 p 3 6
10 p

p

p

Then we fix  to be  and vary  among , , and
 to explore the influence of . Results are shown in

Fig.  A2.  Similar  to  the  phenomenon  in Fig.  A1,  the
overall  trend  of  accuracy  is  upward  as  the  shot  size
increases for all scenarios. For different , the increase
in  accuracy  of  the  proposed  SPOT  algorithm  is  more
stable  than  the  random  sampling  method.  Moreover,
the  performance  of  the  proposed  SPOT  algorithm  has
better  performance  than  random  sampling  in  all
scenarios and is stable across different values of .
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Fig. A1    Image  classification  accuracy  given  the  budgets
(number of training samples) on the CIFAR-10 dataset with
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