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Efficient Variants of Wasserstein Distance in
Hyperbolic Space via Space-Filling Curve

Projection
Tao Li , Cheng Meng , Hongteng Xu, and Jun Zhu

Abstract—Hyperbolic spaces have been considered pervasively
for embedding hierarchically structured data in the recent
decade. However, there is a lack of studies focusing on effi-
cient distance metrics for comparing probability distributions in
hyperbolic spaces. To bridge the gap, we propose a novel metric
called the hyperbolic space-filling curve projection Wasserstein
(SFW) distance. The idea is to first project two probability
distributions onto a space-filling curve to obtain a closed-
form coupling between them and then calculate the transport
distance between these two distributions in the hyperbolic space
accordingly. Theoretically, we show the SFW distance is a proper
metric and is well-defined for probability measures with bounded
supports. Statistical convergence rates for the proposed estimator
are provided as well. Moreover, we propose two variants of the
SFW distance based on geodesic and horospherical projections,
respectively, to combat the curse-of-dimensionality. Empirical
results on synthetic and real-world data indicate that the SFW
distance can effectively serve as a surrogate of the popular
Wasserstein distance with low complexity.

Index Terms—Hilbert curve, hyperbolic space, optimal trans-
port, Wasserstein distance.

I. INTRODUCTION

HYPERBOLIC spaces have gained significant attention
in the recent decade as a pervasive tool for embedding

hierarchically structured data [1], including graphs [2], [3],
words [4], [5], and images [6], [7]. Hyperbolic embedding
has been successfully applied in various tasks, such as text
generation [8], image segmentation [9], drug embedding [10],
molecular generation [11], recommendation system [12], and
reinforcement learning [13]. Consequently, researchers have
extended the conventional tools used for Euclidean space to
also encompass hyperbolic spaces, including the generaliza-
tion of Gaussian distributions [14], [15], hyperbolic neural
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networks [16], [17], and hyperbolic variational auto-encoders
[18]. These extensions have enormous potential to enhance the
capabilities of machine learning models.

Distribution comparison is a fundamental task in many
machine learning tasks including clustering [19], [20], clas-
sification [21], [22], [23], generative modeling [24], [25], and
domain adaptation [26], [27]. Wasserstein distance as a metric
for comparing distributions has recently attracted considerable
attention in the machine learning community, and it has shown
great potential in many challenging problems [28], [29], [30].
However, the computation cost of Wasserstein distance is
expensive, and super-cubical with respect to the number of
samples of each distribution [31]. To alleviate the computa-
tional burden, many surrogates of the Wasserstein distance
have been proposed, e.g., Sinkhorn divergence [32], the sliced-
Wasserstein (SW) distance [33], the generalized SW (GSW)
distance [34], Hilbert curve-based Wasserstein distance [35],
[36], among others. However, when it comes to hyperbolic
spaces, these surrogates are not inherently well-suited since
they are originally defined using Euclidean distances and
projections.

One exception is the recently proposed hyperbolic SW
(HSW) distance [37], which utilized geodesic and horospher-
ical projections to extend the SW distance to hyperbolic
spaces. Despite the computational efficiency, HSW distance
may not serve as a decent surrogate of the Wasserstein
distance. Take two hyperbolic distributions in Fig. 1(a) as
an example. We fix the source distribution (in blue) while
shifting the central component of the target distribution (in
red) along the geodesic. In particular, the source distribution
µ is uniform on the ring (

√
1.16, 0.4 cos(θ), 0.4 sin(θ)), where

θ ∈ [0, 2π), and the target distribution is ν = 0.8µ + 0.2χ{xt}

where xt = cosh(t)x0 + sinh(t)v for direction v = (0, 0, 1)T and
x0 = (1, 0, 0)T. χ is the indicator function. Fig. 1(b) shows the
discrepancy between these two distributions under different
xt with respect to different distance measures, including the
Wasserstein distance, Sinkhorn method, horospherical hyper-
bolic SW (HHSW) distance, geodesic hyperbolic SW (GHSW)
and our proposed approach. The result indicates both HHSW
distance and GHSW distance may lead to coarse approxima-
tions of the Wasserstein distance, whose tendency with respect
to xt can even be opposite to the Wasserstein distance. This
observation indicates that using HSW distances as surrogates
for the Wasserstein distance in hyperbolic spaces may yield
suboptimal outcomes in some learning tasks. Power Voronoi
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Fig. 1. (a) Illustration of the source and the target distribution in a hyperbolic space. (b) Distance is calculated by different metrics with respect to different
values of xt . (c) Comparison between different metrics with respect to their runtime. The proposed SFW distance provides an effective and efficient surrogate
of the Wasserstein distance.

diagram has been used to calculate the hyperbolic Wasserstein
distance [38]. However, their work primarily addresses the
distance between a continuous measure and a discrete measure,
which is not the main focus of this study.

In this study, we propose a novel metric called hyperbolic
space-filling curve projection Wasserstein (SFW) distance for
distribution comparison in hyperbolic spaces. The idea is to
first project two probability distributions onto a space-filling
curve [39] to obtain a closed-form coupling between them
and then calculate the transport distance between these two
distributions in the hyperbolic space accordingly. Compared to
geodesic and horospherical projections, the space-filling curve
projection strategy offers advantages in preserving the inherent
structure of the data distribution since such a projection enjoys
the locality-preserving property, i.e., the locality between data
points in the high-dimensional space being approximately
preserved in the projected 1-D space [40], [41], [42]. Our
SFW distance provides an effective and efficient surrogate of
the Wasserstein, as illustrated in Fig. 1(b) and (c).

We present a comprehensive analysis of the SFW distance,
demonstrating its effectiveness as a well-defined metric for
probability measures with bounded supports in hyperbolic
spaces. We show the computational complexity for calculating
the empirical SFW distance is nearly linear in sample size. In
addition, we introduce two variants of the SFW distance to
address the curse-of-dimensionality. We evaluate the perfor-
mance of the SFW distance and its variants on various machine
learning tasks, including data classification and generative
modeling, and compare them with state-of-the-art methods.
Our empirical results demonstrate the superior performance of
the proposed metrics in both synthetic and real-data settings.

II. BACKGROUND

A. Wasserstein Distance and SW Distance

Let (M, dM) be a metric space. Consider
two probability measures µ, ν ∈ Pp(M) =˚
µ ∈ Pp(M),

R
M dM(x, x0)pdµ(x) < ∞ for any x0 ∈ M

	
. The

p-Wasserstein distance [28] between µ and ν is defined as

Wp(µ, ν) =

�
inf

γ∈Π(µ,ν)

Z
M×M

dM(x, y)pdγ(x, y)
�1/p

(1)

where Π(µ, ν) is the set of all couplings: Π(µ, ν) = {γ ∈
P(M×M) s.t. ∀ Borel set A, B ⊂ M, γ(A×M) = µ(A), γ(M×
B) = ν(B)}. If the geodesic distance in hyperbolic space is used
as dM(x, y), the p-Wasserstein distance is naturally referred to
as the hyperbolic p-Wasserstein distance [38].

The main bottleneck of the Wasserstein distance is its
high computational complexity, making it inapplicable for
large-scale data. Specifically, (1) can be solved using linear
programs with a computational complexity of O(n3 log(n))
for two discrete probability measures with n observations.
A fast approximate solution to the Wasserstein distance is
provided by the Sinkhorn algorithm, which incorporates an
entropic regularizer [43]. Recently, several efficient variants
of the Sinkhorn algorithm have been proposed to enhance its
performance [44], [45], [46].

In the recent decade, SW distance has been proposed to
alleviate the computational burden of Wasserstein distance
in Euclidean space [33]. Note that the Wasserstein distance
enjoys a closed-form solution for 1-D probability measures µ
and ν in Euclidean space

Wp(µ, ν) =

�Z 1

0

ˇ̌
F−1
µ (t) − F−1

ν (t)
ˇ̌p

dt
�1/p

(2)

where Fµ(t) = µ((−∞, t]) and Fν(t) = ν((−∞, t]) are the cumu-
lative distribution functions (cdfs) for µ and ν, respectively.
This motivates the development of the sliced Wasserstein
distance, which projects d-dimensional probability measures
to 1-D space and computes the 1-D Wasserstein distance in
this reduced dimension. Let Vd,q = {U ∈ Rd×q : U>U = Iq}

(q < d) be the set of orthogonal matrices and PU(x) = U>x
be the linear transformation for x ∈ Rd. Denote PU#µ as the
pushforward of µ by PU, which corresponds to the distribution
of the projected samples. For all µ, ν ∈ Pp(Rd), the p-sliced
Wasserstein distance is given by

SWp(µ, ν) =

�Z
U∈Vd,1

W p
p (PU#µ, PU#ν) dσ(U)

�1/p

(3)

where σ is the uniform distribution on Vd,1. Using a
Monte-Carlo scheme, SW distance can be approximated in
O(Ln log(n)) time, where L is the number of random projec-
tions and n is the number of samples. Some recent studies
develop several extensions for SW distances to other spaces,
e.g., sphere and hyperbolic spaces [37], [47].
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Fig. 2. (a) Two hyperbolic models: Lorentz model L2 and Poincaré ball B2.
(b) Discrete approximations of the Hilbert and Morton space-filling curve.

B. Hyperbolic Spaces

Hyperbolic spaces have been considered pervasively for
embedding hierarchically structured data in the recent decade
[1]. There are two widely used parameterizations of a hyper-
bolic manifold Hd, i.e., the Poincaré ball Bd and the Lorentz
model Ld, as illustrated in Fig. 2(a). While these two param-
eterizations are known to be equivalent (isometric), each
enjoys its own advantages in different applications [37]. In
particular, these parameterizations of hyperbolic models yield
different ambient spaces, resulting in slightly different SFW
distances, see Section III-A of Supplementary Material for
more discussions.

1) Lorentz Model: Lorentz model Ld ⊂ Rd+1 can be defined
as Ld = {(x1, x2, . . . , xd, xd+1) ∈ Rd+1, 〈x, x〉L = −1, x1 > 0},
where ∀x, y ∈ Rd+1, 〈x, y〉L = −x1y1+

Pd+1
i=2 xiyi. The geodesic

distance, which denotes the length of the shortest path between
two points in this manifold, is defined as

∀x, y ∈ Ld, dL(x, y) = arccosh(− 〈x, y〉L). (4)

2) Poincaré Ball: Poincaré ball Bd ⊂ Rd can be defined as
Bd = {x ∈ Rd, ‖x‖2 < 1}, with geodesic distance

∀x, y ∈ Bd, dB(x, y) = arccosh

 
1+2

‖x−y‖22�
1−‖x‖22

� �
1−‖y‖22

�!
.
(5)

The following mappings show how to switch between the
Lorentz model and Poincaré ball:

∀x ∈ Ld, PLd→Bd (x) =
1

1 + x1

�
x2, . . . , xd, xd+1

�
(6)

∀x ∈ Bd, PBd→Ld (x) =
1

1 − ‖x‖22

�
1 + ‖x‖22, 2x1, . . . , 2xd

�
. (7)

C. Operations on Hyperbolic Spaces

Consider the Lorentz model Ld. Denote x0 = (1, 0, . . . , 0) ∈
Ld. Tangent spaces are described formally as

TxL
d =

˚
v ∈ Rd+1, 〈v, x〉L = 0

	
.

The formula of parallel transport from x to y is

∀v ∈ TxL
d, PT x→y(v) = v +

〈y, v〉L
1 − 〈x, y〉L

(x + y). (8)

Furthermore, the exponential map expMapx : TxL
d → Ld is

∀v ∈ TxL
d, expMapx(v) = cosh (‖v‖L) x

+ sinh (‖v‖L)
v
‖v‖L

(9)

where ‖v‖L =
√
−〈v, v〉L.

The logarithmic maps logMapx : Ld → TxL
d is the inverse

map of expMapx.
The exponential map expMapx : TxB

d → Bd for the
Poincaré model is

expMapx(v) =
A
B

A = λx

�
cosh (λx‖v‖2)+

�
x,

v
‖v‖2

�
sinh (λx‖v‖2)

�
x

+
1
‖v‖2

sinh (λx‖v‖2) v

B = 1 + (λx − 1) cosh (λx‖v‖2)

+ λx

�
x

v
‖v‖2

�
sinh (λx‖v‖2) (10)

where λx = (2/(1 − ‖x‖22)). Specifically, if x = 0d, we have

expMap0d
(v) = tanh (‖v‖2)

v
‖v‖2

(11)

logMap0d
(y) = tanh−1 (‖y‖2)

y
‖y‖2

. (12)

D. Distribution on Hyperbolic Spaces

A common distribution in hyperbolic spaces is the wrapped
normal distribution [14]. This distribution x ∼ G(µ,Σ) can be
sampled by the following steps: first, drawing v ∼ N(0,Σ) and
then transforming it into v ∈ TxL

d by concatenating a 0 in the
first coordinate; second, using parallel transport to transport
v from Tx0Ld to TµLd; third, projecting the samples onto the
manifold by the exponential map expMapµ.

E. Optimization on Hyperbolic Spaces

Gradient descent-based methods are developed on hyper-
bolic space [1], [48], [49], [50], [51]. Among them, the
Riemannian gradient descent is

∀k > 0, xk+1 = expMapxk

�
−γgrad f (xk)

�
(13)

where f : M → R.
1) Lorentz Model: For M = Ld, the Riemannian gradient

is
gradf(x) = Projx (J∇f (x)) (14)

where J = diag(−1, 1, . . . , 1) and Projx(z) = z + 〈x, z〉Lx.
2) Poincaré Ball: For M = Bd, the Riemannian gradient is

grad f (x) =

�
1 − ‖θ‖22

�2

4
∇ f (x). (15)

After computing the exponential map, we could perform the
Riemannian gradient descent [16].

Furthermore, the exponential map in (13) can be replaced
more generally by a retraction. We could use a retraction
Rx(v) = x + v instead of the exponential map, and add a
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projection, to constrain the value to remain within the Poincaré
ball [1]

proj(x) =

8<:
x
‖x‖2

− ε, if ‖x‖ ≥ 1

x, otherwise
(16)

where ε = 10−5 is a small constant. The algorithm becomes

xk+1 = proj

 
xk − γ

�
1 − ‖xk‖

2
2

�2

4
∇ f (xk)

!
. (17)

F. Space-Filling Curves

A space-filling curve is a continuous mapping C from
a 1-D interval, typically [0, 1], to a higher-dimensional
cube [0, 1]d.1 It fills the space without gaps or over-
laps, that is, [0, 1]d ⊂ C([0, 1]) and the set {t ∈

[0, 1]d : set C−1(t)has at least two elements} has Lebesgue
measure zero. In other words, it is a curve that passes
through every point in the space in a way that preserves
the locality and continuity of the points. Due to these nice
properties, space-filling curves have been widely applied in
many fields, including computer graphics, image processing,
scientific computing, and geographic information systems
[39], [42]. Some well-known space-filling curves include the
Morton curve, the Hilbert curve, the Peano curve, and the
Sierpiński curve. Fig. 2(b) illustrates the discrete version of
the Hilbert and Morton space-filling curves, respectively.

To be more detailed, we provide the definition of the Hilbert
curve as an example [52]. For integer m ≥ 0, we define 2dm

intervals

Im
d (k) =

�
k

2dm ,
k + 1
2dm

�
, k = 0, . . . , 2dm − 1 (18)

and let Im
d = {Im

d (k) | k < 2dm}.
For κ = (k1, . . . , kd) with k j ∈ {0, 1, . . . , 2m − 1}, we define

2dm subcubes of [0, 1]d

Em
d (κ) =

dY
j=1

�
k j

2m ,
k j + 1

2m

�
(19)

and let Em
d = {Em

d (κ) | κ ∈ Km
d } where Km

d = {0, 1, . . . , 2m − 1}d

is the set of indices κ.
Then, there is a sequence of mappings Hm : Im

d → Em
d

satisfying the following three properties.
1) For k , k′,Hm(Im

d (k)) , Hm(Im
d (k′)).

2) The two subcubes Hm(Im
d (k)) and Hm(Im

d (k + 1)) have
one (d − 1)-dimensional face in common.

3) If we split Im
d (k) into the 2d successive subintervals

Im+1
d (k`), k` = 2dk + `, ` = 0, . . . , 2d − 1, then the

Hm+1(Im+1
d (k`)) are subcubes whose union is Hm(Im

d (k)).
The Hilbert curve is defined by H(x) = limm→∞ Hm(x).
Space-filling curves enjoy the so-called locality-preserving

property [41], [42], [52]. In particular, as stated in [41], “One
of the most desired properties from such linear mappings
is clustering, which means the locality between objects in
the multidimensional space being preserved in the linear

1The range [0, 1]d could be extended to the hyper-rectangle
Qd

i=1[ai, bi]
simply by linear transformation.

space.” Mathematically, such locality-preserving property can
be stated as, for any x, y ∈ [0, 1], one has

‖C(x) −C(y)‖2 ≤ 2
√

d + 3|x − y|1/(κd) (20)

where κ is the locality-preserving coefficient of the space-
filling curve. Existing literature shows that the Hilbert, Peano,
and Sierpiński space-filling curves satisfy the inequality (20)
with κ = 1, while the Morton space-filling curve performs
slightly worse such that its coefficient κ = log2 3 [42], [52].

III. PROPOSED METHOD

A. Quantile Function for Probability Measures in
Hyperbolic Space via Space-Filling Curves

In this study, we focus on Borel probability measures in
a hyperbolic space with bounded supports and denote the
set of such measures as P∞(Hd). The quantile function, also
known as the inverse cdf, is crucial for deriving the closed-
form solution for the Wasserstein distance, as shown in (2).
However, extending the quantile function to hyperbolic spaces
is a challenging task. We propose to utilize space-filling curves
to achieve the goal.

Definition 1: Denote the support of the probability measure
µ ∈ P∞(Hd) as Ωµ. Let space-filling curve Cµ : [0, 1] →eΩµ, where eΩµ is the smallest hyper-rectangle that covers
Ωµ. Denote K as a dense set in [0, 1], satisfying Cµ([0, s])
is Borel measurable set for any s ∈ K. Let gµ(t) =

inf s∈K, s≥t µ(Cµ([0, s]) ∩ Hd), and g−1
µ (t) = inf s∈[0,1], gµ(s)>t s.

The quantile function for µ in hyperbolic space Hd via space-
filling curves C is defined as

Qµ,C(t) = Cµ

�
g−1
µ (t)

�
.

Remark 1: Existence of K is easy to prove. One could take
K = {m1/2m2 : m1,m2 ∈ N,m1 ≤ 2m2 } for the Hilbert curve
and K = {m1/3m2 : m1,m2 ∈ N,m1 ≤ 3m2 } for the Peano curve
[39], [42]. Different choices of K won’t affect the definition
since g−1

µ (t) is increasing and K is dense.
Remark 2: Similar to inequality (20), it is easy to show that

such a locally preserving property still holds in hyperbolic
spaces. We refer to supplementary material for more details.

B. Hyperbolic SFW Distance

Inspired by the closed form of 1-D Wasserstein distance (2),
we develop the hyperbolic SFW distance defined as follows.

Definition 2: (Hyperbolic SFW Distance): Consider two
probability measures µ, ν ∈ P∞(Hd). Denote the quantile
function for µ, ν in hyperbolic space Hd via space-filling
curves C as Qµ,C ,Qν,C , respectively. For p ∈ Z+, the p-order
hyperbolic SFW distance is defined as

SFW p,C(µ, ν) =

�Z 1

0
dH
�
Qµ,C(t),Qν,C(t)

�pdt
�1/p

.

From the above definition, the fundamental idea of SFW
distance is first projecting two probability distributions along
the space-filling curve to obtain an efficient and effective
coupling between them and then calculating the corresponding
transport distance between two distributions in the hyperbolic
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space according to the coupling. The following theoretical
results show that SFW distance is a proper metric and serves
as an upper bound of the p-Wasserstein distance. All the proofs
are relegated to supplementary material.

Theorem 1: SFW p,C is a well-defined metric in P∞(Hd),
and Wp(µ, ν) ≤ SFW p,C(µ, ν) for any µ, ν ∈ P∞(Hd).

1) Topological Properties of the SFW Distance: Theorem
1 tells us that SFW distance induces a stronger topology com-
pared to Wasserstein distance. More precisely, the sequence
of probability measures {µn} always converges in Wasserstein
distance as n → ∞ if it converges in SFW distance, i.e.,
SFW p,C(µn, µ) → 0 ⇒ W(µn, µ) → 0. Furthermore, we
conduct a comparison between SFW distance and the total
variation (TV) distance regarding their induced topology.

Theorem 2: Let eΩµ,eΩµn be the smallest hyper-rectangle that
covers the supports of the probability measure µ, µn ∈ P∞(Hd),
respectively. When eΩµn = eΩµ for all n’s, we have TV(µn, µ)→
0⇒ SFW p,C(µn, µ)→ 0.

2) Comparison With Existing Methods: The proposed SFW
distance enjoys several critical advantages over the Wasserstein
distance and hyperbolic SW distance. First, SFW distance
has less computational complexity. Second, SFW distance is
a well-defined metric and provides a decent transport plan
between the input probability measures as a byproduct, while
hyperbolic SW distance may not satisfy these. Last but not
least, SFW distance serves as a decent surrogate of the Wasser-
stein distance. SFW distance computes distance in original
hyperbolic spaces rather than the projected 1-D space. Fig. 1
intuitively shows the difference between these two strategies.
The reason for the opposite trend observed in hyperbolic SW
distance, in contrast to the Wasserstein distance and SFW
distance, is that hyperbolic SW distance computes distances
using transformed 1-D data points. This transformation may
break the distance structure of the original distributions.

C. Statistical Property

Let {xi}
n
i=1 ∼ µ, whose empirical measure is defined by

µn = (1/n)
Pn

i=1 δxi . The following theorem provides an upper
bound for the statistical convergence rate of the empirical SFW
distance.

Theorem 3: Assume that probability measures µ, ν ∈

P∞(Hd). Let {xi}
n
i=1 and {yi}

n
i=1 be two i.i.d. samples, which are

generated from probability measures µ and ν, respectively. Let
{x(i)∗ }

n
i=1 and {y(i)∗ }

n
i=1 be the sorted samples along the space-

filling curve Cµ and Cν, respectively. Then, we have almost
surely  

1
n

nX
i=1

dH(x(i)∗ , y(i)∗ )p

! 1
p

→ SFW p,C(µ, ν).

Furthermore, we haveˇ̌̌̌
ˇ̌E
 

1
n

nX
i=1

dH(x(i)∗ , y(i)∗ )p

! 1
p

− SFW p,C(µ, ν)

ˇ̌̌̌
ˇ̌

. O
�

n−
1

2 max{p,κd′}

�
where κ is the locality-preserving coefficient of the space-filling
curve, d′ = d if Hd = Bd and d′ = d + 1 if Hd = Ld.

Algorithm 1 Computation of SFW Distance
1: Input: ({xi}

m
i=1, a), ({y j}

n
j=1, b), k-order discrete space-

filling curve Ck

2: Map {xi}
m
i=1 to {x′i }

m
i=1, {y j}

n
j=1 to {y′j}

n
j=1, through space-

filling curve CkO((m + n)dk)
3: Calculate the optimal transport plan P between ({x′i }

m
i=1, a)

and ({y′j}
n
j=1, b) using sorting and the North-West corner

rule. Let S := {(i, j)|Pi j , 0}O(m log(m) + n log(n))

4: Output: P, SFW p,Ck =
�P

(i, j)∈S dH(xi, y j)pPi j

�1/p

Fig. 3. GPU time versus different n when d = 3.

Theorem 3 tells us the empirical SFW distance is to compute
the distance between two space-filling curve sorted samples. In
addition, we know that the convergence rate of the empirical
SFW distance is no more than O(n−1/(2p) + n−1/(2κd′)), which
is slightly larger than the convergence rate of the Wasserstein
distance, i.e., O(n−1/(2p) + n−1/d′ ) provided by [53].

D. Numerical Implementation

In practice, the empirical SFW distance is to compute
the distance between two samples sorted by the space-
filling curve. We utilize recursively space-filling curve sorting
algorithm [39], [54], [55], [56]. The complexity of sort-
ing based on the k-order discrete space-filling curve for n
points in d-dimensional space is O(ndk) [54], [55], [57].
Algorithm 1 demonstrates the process of computing SFW
distance. Solving the optimal transport problem in Step 3
requires O(n log n + m log m) time. As suggested by [39], we
select k that of the order O(log(n)) in practice. Hence, the
overall computational complexity of SWF distance is at the
order of O(n log(n)d) when m = O(n). We compare the runtime
in Fig. 3.

We analyze the effect of k in the proposed SFW distance
using a synthetic example. We generate two samples of size
N from the bounded distribution in Hd and calculate the SFW
distance between these two samples. All the experiments are
replicated 100 times. The left panel of Fig. 4(b) shows the
average SFW distances versus different N, and the right panel
shows the average CPU time for generating the k-order discrete
version of the space-filling curve when d = 2. The results for
d = 10 are shown in Fig. 4(c). From these two figures, we
observe that the SFW distance is not sensitive to the choice
of k as long as k is not too small. In addition, we observe
that the computational cost for generating the k-order discrete
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Fig. 4. (a) CPU time for generating the k-order discrete space-filling curve
versus d when N = 100. (b) Left: SFW distance versus N when d = 2. Right:
CPU time for generating the k-order discrete space-filling curve versus N
when d = 2. (c) Left: SFW distance versus N when d = 10. Right: CPU time
for generating the k-order discrete space-filling curve versus N when d = 10.

version of the space-filling curve is linear to n. Furthermore,
the results in Fig. 4(a) indicate that the computational cost
for generating the k-order discrete version of the space-filling
curve is linear to d.

IV. VARIANTS OF THE HYPERBOLIC SFW DISTANCE

The theoretical results presented in Section III suggest that,
similar to the Wasserstein distance, the proposed SFW distance
might also encounter the curse-of-dimensionality. Motivated
by the projection-robust Wasserstein distance [58], [59], we
propose two natural variants of the SFW distance to miti-
gate this limitation. There are two main projection methods,
geodesic projection, and horospherical projection, that map
points in hyperbolic space to subspaces while preserving
information [37], [60]. Fig. 5 gives a toy example to show how
these two projections operate. We develop the closed-form
solution of the geodesic projection and provide an algorithm
in Algorithm 2. Results about the horospherical projection are
provided in Supplementary Material.

Since the Lorentz model and Poincaré ball could be con-
verted interchangeably (6) and (7), we only consider the
Lorentz model Ld for simplicity. Subspace of Ld corresponding
to U ∈ Vd,q is Ld ∩ U , where U is the subspace spanned

Fig. 5. (a) Geodesic projection and (b) horospherical projection of (blue)
points on a geodesic (black line) in B2. Projected points on the geodesic are
in red.

Algorithm 2 Computation of SFWIPR Distance for Lorentz
Model (Geodesic Projection)

1: Input: ({xi}
m
i=1, a), ({y j}

n
j=1, b), k-order discrete space-

filling curve Ck, number of projections L, projected
dimension q

2: For l = 1 to L do
a) Draw a random orthogonal matrix U ∈ Rd×q, and let U∗ =�

1 0T
q

0d−1 U

�
b) Let x′i = U>∗ xi/

q
−
˝
U>∗ xi,U>∗ xi

˛
L

and y′i =

U>∗ yi/
q
−
˝
U>∗ yi,U>∗ yi

˛
L

c) Dl = Algorithm 1[({x′i }
m
i=1, a), ({y′j}

n
j=1, b),Ck]

3: Output: SFWIPRp,q,Ck
=
�

1
L

PL
l=1 Dp

l

�1/p
.

by matrix U∗ =
�

1 0T
q

0d−1 U

�
∈ R(d+1)×(q+1). For x ∈ Ld,

geodesic projection of x corresponding to U is ProjU(x) =

UT
∗ arg miny∈Ld∩U dL(x, y).
Lemma 1: Geodesic projection of x ∈ Ld corresponding to

U is ProjU(x) = (UT
∗ x/(−〈UT

∗ x,UT
∗ x〉L)1/2).

Definition 3: (Integral Projection Robust Hyperbolic SFW
Distance): Consider two probability measures µ, ν ∈ P∞(Hd).
For p ∈ Z+, the p-order q-dimensional(q ≤ d) integral
projection robust hyperbolic space-filling curve projection
Wasserstein (SFWIPR) distance is defined as

SFWIPRp,q,C (µ, ν)

=

 Z
U∈Vd,q

SFW p,C
�
ProjU#µ,ProjU#ν

�p dσ(U)

!1/p

where ProjU : Hd → Hq is either geodesic projection or
horospherical projection.

Theorem 4: SFWIPRp,q,C is a pseudo-distance in P∞(Hd).
Specifically, when q = d, SFWIPRp,q,C is a well-defined metric
in P∞(Hd).

Based on Theorem 3, we could prove that an upper bound
for the convergence rate of SFWIPR is O(n−(1/2 max{p,κq′})),
where q′ = q for the Poincaré ball and q′ = q + 1 for the
Lorentz model. The detailed theoretical results are relegated
to Supplementary Material.

We consider a synthetic example to demonstrate the empir-
ical convergence of the proposed distances. We generate two
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Fig. 6. Comparison for convergence rates of different dimensions. Left: d = 4.
Right: d = 20. Each curve represents the average distance with respect to 100
replications.

samples of size n from the standard d-dimensional wrapped
normal distributions in the Lorentz model, and we calculate the
distances between these two samples with respect to different
distance metrics. Fig. 6 shows the average distances with
respect to 100 replications versus n for d = 4 (left) and d = 20
(right), respectively. We observe that when d = 20, the SFW
distance converges slowly as expected, while SFWIPR(geo) and
SFWIPR(horo) converge much faster, which shows that SFWIPR

combats curse-of-dimensionality.

V. APPLICATIONS IN MACHINE LEARNING TASKS

To validate the feasibility and efficiency of our SFW dis-
tance and its variants, we compare Wasserstein distance (with
the geodesic distance as cost), SW distance [33] (denote SWB,
SWL for SW in Poincaré ball and Lorentz model, respec-
tively), and hyperbolic SW [37] (denote GHSW, HHSW for
geodesic, HHSW distance, respectively). To demonstrate the
advantages of hyperbolic spaces over Euclidean space, we also
consider the distribution comparison methods in Euclidean
space, including maximum mean discrepancy (MMD), SW
distance, Hilbert curve projection (HCP) distance [36]. For
SFW distance and its variants, we set p = 2 and q = 2, take
the Morton curve, and use the Poincaré ball. All experiments
are implemented by a single RTX 3090 GPU.

A. Comparison of Different Discrepancies

1) Evolution: Following the experiment in [37], we com-
pare the evolution of each method between wrapped normal
distributions G(µ,Σ) [14], where one is centered and the other
moves along a geodesic. We plot the evolution of the dis-
tances between G(x0, I3) and G(xt, I3) where x0 = (1, 0, 0, 0)T,
xt = cosh(t)x0 + sinh(t)v for t ∈ [−10, 10] and direction
v = (0, 1/

√
3, 1/

√
3, 1/

√
3)T. As shown in Fig. 7, SFW has

almost the same trend as Wasserstein distance. SWL explodes
when the two distributions are getting far from each other,
which might bring numerical instabilities. GHSW and SWB

have small derivatives when the two distributions are far
from each other, while HHSW has small derivatives when the
two distributions are close to each other, which might lead
to slower convergence for gradient-based learning tasks; see
Fig. 8.

TABLE I
DOCUMENT CLASSIFICATION ACCURACY AND GPU TIME TESTED ON

BBCSPORT (EACH DOCUMENT IN BBCSPORT HAS NEARLY 100
WORDS)

2) Gradient Flow: We consider the problem minµ W2(µ, ν),
where ν is a fixed target distribution, and µ is the source
distribution initialized as a wrapped normal distribution µ0
and updated iteratively via ∂tµt = −∇W2(µt, ν) by a Rie-
mannian gradient descent [48]. Following the experiment in
[37], we consider four different distributions for the target ν,
and approximate the Wasserstein distance W2 by SWB, SWL,
GHSW, HHSW, and SFW. The experiments are replicated ten
times for each method with the same learning rate, and we
record the averaged two-Wasserstein distance between µt and
ν at each iteration in Fig. 8. We can find that applying SFW
always accelerates the learning process and yields superior
results. When the target is close to the border, SWL suffers
from numerical instabilities, and SWB and GHSW are slower
to converge. And, when the target possesses more weights near
the origin, HHSW has a slower convergence.

3) Document Classification: Document classification can
be achieved by comparing the Wasserstein distance between
two documents’ word embedding sets, as the Word Mover
distance [21] does.

Recent studies have shown that the hyperbolic space could
be preferred over the Euclidean space for embedding words
[1], [4], [5]. SFW distance could provide an efficient surrogate
of the Wasserstein distance in this problem, as demonstrated
by the following experiment. We consider four datasets, e.g.,
BBCSPORT, TWITTER, AMAZON, and CLASSIC dataset,
in which each document is represented as a set of 100-D
word embeddings derived by the pretrained Euclidean and
hyperbolic word embedding model [5]. We randomly split
the dataset into 80% for training and 20% for testing, used
the K-NN algorithm (k = 20) based on different metrics, and
reported the averaged results in 100 trials. Table I shows that
SFW performs better than HCP, which indicates that using
hyperbolic word embeddings improves classification accuracy.
What’s more, for hyperbolic distribution metrics, SFW out-
performs HHSW. While GHSW performs similar to SFW, it
takes over ten times longer. Although Wasserstein distance
with geodesic groundcost has shown significant improvement,
its computation time is about eight times that of SFW distance
and this ratio will improve rapidly for longer documents.

B. Hyperbolic WAE

We design new members of Wasserstein autoencoder (WAE)
[29] in hyperbolic space. Assume f is encoder and g is decoder,
pZ a prior distribution

L( f , g) =

Z
c(x, g( f (x)))dµ(x) + λD ( f#µ, pZ)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Renmin University. Downloaded on April 24,2025 at 08:30:11 UTC from IEEE Xplore.  Restrictions apply. 



8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 7. Comparison of distances between two wrapped normal distributions with dimension d = 3.

Fig. 8. Log-10 Wasserstein distance between a target and the gradient flow of SFW, GHSW, HHSW, SWB, and SWL.

where µ is the distribution of the data, λ is a hyperpa-
rameter, and D is distribution distance. In particular, when
training autoencoders, we leverage SFW, SFWIPR(geo), and
SFWIPR(horo) to penalize the distance between the latent
prior distribution and the expected posterior distribution, which
leads to three different generative models, denoted as SFWAE,
SFWIPR(geo)AE, and SFWIPR(horo)AE. We test these three
models in hierarchical data embedding and image generation
tasks, comparing them with the original Euclidean space-
based WAE using MMD [29] and the well-known sliced WAE
(SWAE) [61]. We use the wrapped normal distribution as latent
prior distribution for hyperbolic WAE and normal distribution
for Euclidean WAE.

1) WAE for BDP: First, we test the capability of SFWAE to
embed tree-structured data with low distortions. Theoretically,
any tree-structured data can be embedded in the hyperbolic
space with arbitrarily low distortion [62]. We train SFWAE
to encode data generated from a branching diffusion process
(BDP) that explicitly incorporates hierarchical structure to B2

(for the sake of visualization). We follow the generation of the
synthetic BDP in [18].

We train models on noisy vector representations and, hence,
have no access to the true hierarchical representation. We
report the correlation between the Euclidean distance and the
embedding distance in Table II, and the embedding results
achieved by our methods are shown in Fig. 9. All models

Fig. 9. Embeddings learned from different WAE models. Embeddings of
noisy observations are represented by small black points, and violet points
represent embeddings of true nodes. Blue lines represent the true hierarchy.
(a) WAE. (b) SFWAE. (c) SFWIPR(horo)AE. (d) SFWIPR(geo)AE.

somewhat learn the hierarchical structure, yet WAE’s latent
representation is the most distorted.

2) WAE for MNIST and CelebA: Second, we test the feasi-
bility of SFWIPR(geo)AE and SFWIPR(horo)AE in cases with
high-dimensional latent space. Hyperbolic image embeddings
provide a better alternative [7]. Here, we consider datasets
MNIST and CelebA. The dimension of the latent distribution
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TABLE II
NUMERICAL RESULTS OF DIFFERENT WAE MODELS ON THREE DATASETS

Fig. 10. Performance of our generators on MNIST generation. (a) WAE. (b) SFWIPR(horo)AE. (c) SFWIPR(geo)AE. (d) FID.

TABLE III
TEST CLASSIFICATION ACCURACY ON IMAGE CLASSIFICATION

is 10 for MNIST and 64 for CelebA. The autoencoding
architecture of MNIST is similar to that in [61], and the
autoencoding architecture of CelebA is similar to that in [29].
We add an exponential map after the last layer of encoders
and a logarithmic map before the first layer of decoders to let
the encoded samples lie on the hyperbolic space.

We compare the proposed methods with the Fréchet
inception distance (FID) [64] between all testing samples.
Table II lists the main differences between SFWIPR(geo)AE,
SFWIPR(horo)AE and other baselines. We omitted the results
of SFW for high-dimensional cases (MNIST and CelebA)
due to the curse-of-dimensionality and instead focused on
the results of SFWIPR. Among these autoencoders, our meth-
ods have lower FID scores and converge faster. Image
generation results achieved by our methods are shown in
Fig. 10.

3) Image Classification on CIFAR10 and CIFAR100:
Following the experiments in [37], we consider image clas-
sification on datasets CIFAR10 and CIFAR100 [65]. Let
{(xi, yi)n

i=1} be a training set where xi ∈ R
d and yi ∈ {1, . . . ,C} is

the corresponding label. Researchers perform classification on
the Poincaré ball [63]. They assign a prototype pc ∈ S dz−1

to each class c ∈ {1, . . . ,C} and learn an embedding on
the hyperbolic space using a neural network fθ followed
by the exponential map. To be more precise, they consider

minimizing the following loss:

`(θ) =
1
n

nX
i=1

�
Bpyi

(zi) − λ log
�
1 − ‖zi‖

2
2

��
(21)

where zi = expMap0dz
( fθ(xi)). The first term is the Busemann

function, which will pull the representations of xi closer to
the prototype assigned to the class yi. The second term,
which could be decisive in improving accuracy, penalizes
representation if it is far from the origin. The classification
of the input is arg maxc〈zi/‖zi‖2, pc〉.

Researchers propose to replace the second term with a
global prior on the distribution of the representations [37].
More precisely, they add a discrepancy between the distribu-
tion zi and a mixture of C wrapped normal distributions where
the centers are {αp j}

C
j=1, α ∈ (0, 1). We choose HHSW, GHSW,

SFW, SFWIPR(geo) and SFWIPR(horo) as the discrepancy.
We also consider the original penalty [63] and a similar
hyperspherical prototype method [66]. Similarly, we have
omitted the results of SFW for CIFAR100 due to the curse-
of-dimensionality.

Following the setting in [37], we use a Resnet-32 backbone
with the exponential map at the last layer, optimize it with
Adam, a learning rate of 5e−4, weight decay of 5e−5, batch
size of 100, and train it for 1110 epochs with learning rate
decay of 10 after 1000 and 1100 epochs. All parameters are
the same as [37], and the only difference is that we take λ = 0.1
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for SFW. In Table III, we report the classification accuracy on
the test set. Our proposed methods outperform other methods
for all the different dimensions.

VI. CONCLUSION

We propose a novel metric, called the hyperbolic SFW
distance, which can measure the distance between two proba-
bility distributions in hyperbolic spaces with low complexity.
Theoretically, we show the SFW distance is a proper metric
and is well-defined for probability measures with bounded
supports. Statistical and topological properties are provided as
well. Moreover, we propose two variants of the SFW distance
based on geodesic and horospherical projections, respectively,
to combat the curse-of-dimensionality.

However, the SFW distance still suffers from some limita-
tions. Similar to HSW distance, the SFW distance sacrifices
the invariance to isometric transformations to reduce the
computation cost. Besides, SFW distance could not quantify
the discrepancy between two measures with different masses.
We left these directions for our future work. Furthermore, we
plan to extend space-filling curve projection-based distance to
more general manifolds.
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