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The architecture of apple trees plays a pivotal role in shaping their growth and fruit-bearing potential, 
forming the foundation for precision apple management. Traditionally, 2D imaging technologies were 
employed to delineate the architectural traits of apple trees, but their accuracy was hampered by occlusion 
and perspective ambiguities. This study aimed to surmount these constraints by devising a 3D geometry-
based processing pipeline for apple tree structure segmentation and architectural trait characterization, 
utilizing point clouds collected by a terrestrial laser scanner (TLS). The pipeline consisted of four modules:  
(a) data preprocessing module, (b) tree instance segmentation module, (c) tree structure segmentation 
module, and (d) architectural trait extraction module. The developed pipeline was used to analyze 84 trees 
of two representative apple cultivars, characterizing architectural traits such as tree height, trunk diameter, 
branch count, branch diameter, and branch angle. Experimental results indicated that the established 
pipeline attained an R2 of 0.92 and 0.83, and a mean absolute error (MAE) of 6.1 cm and 4.71 mm for tree 
height and trunk diameter at the tree level, respectively. Additionally, at the branch level, it achieved an 
R2 of 0.77 and 0.69, and a MAE of 6.86 mm and 7.48° for branch diameter and angle, respectively. The 
accurate measurement of these architectural traits can enable precision management in high-density 
apple orchards and bolster phenotyping endeavors in breeding programs. Moreover, bottlenecks of 3D 
tree characterization in general were comprehensively analyzed to reveal future development.

Introduction

Apples, temperate fruit renowned for their delectable flavor and 
health-boosting properties, are packed with vitamins, minerals, 
and dietary fiber that shield the human body from oxidative 
stress and chronic illnesses [1]. Apple production is economically 
vital globally and in the United States, where it has a farm value 
of $3.2 billion in 2022 [2]. The sustainable growth of the apple 
industry hinges on the development and management of apple 
trees with optimal architectural traits, as these traits substantially 
influence the trees’ vegetative growth, fruiting potential, and 
environmental interactions. For instance, a tree’s height affects 
the light exposure to its lower sections, impacting the yield and 
quality of the fruit in commercial orchards, while the trunk 
diameter determines optimal crop load. Therefore, it is impera-
tive for growers to accurately assess tree architectural traits to 
proficiently manage orchards for maximal productivity and 
superior quality.

Apple tree characterization has been dependent on manual 
measurements and observations, which include visual inspection 

and the use of tape measures or calipers for assessing traits. These 
methods are laborious and subjective and often fail to capture 
the intricate and diverse nature of tree architecture, which is 
critical for fruit production. For instance, visual inspection may 
not discern minor variations in branch angles, lengths, or diam-
eters that influence the distribution of fruiting sites and the tree’s 
overall fruiting capacity. Furthermore, complex branch and tree 
morphology may present challenges in placing conventional 
tools (e.g., angle rulers) for measurements in the field. Optical 
sensing technologies (especially imaging) are gaining traction 
due to their noninvasive, versatile, and cost-effective attributes. 
These technologies furnish detailed insights into plant architec-
ture as well as physiological and biochemical properties [3–5]. 
Consequently, there is an escalating interest in the development 
of cutting-edge imaging technologies and machine learning 
(ML) methods for more precise and efficient plant trait charac-
terization. Leveraging these technologies could surmount the 
constraints of conventional methods, yielding a holistic compre-
hension of tree architectural traits, which is essential for the 
enhanced management and optimization of fields and orchards.
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2D imaging systems have been broadly used to characterize 
trees and tree crops [6]. Over time, there has been a noticeable 
transition from reliance on visual and geometric methods 
[7–14] toward the adoption of ML-based approaches [12,13, 
15–19]. This shift is due primarily to the substantial improve-
ments of model accuracy and robustness that deep learning 
(DL) models have offered in recent years [3,20]. However, occlu-
sion and perspective ambiguity issues dramatically limit the use 
of 2D imaging methods, particularly in the field, presenting 
major challenges in tree and tree crop characterization. To over-
come these challenges, researchers have extensively studied and 
improved three-dimensional (3D) sensing technologies, such 
as multi-view 3D reconstruction systems and LiDAR sensors 
such as terrestrial laser scanner (TLS), leading to the active 
development of 3D data processing for tree trait characterization 
[21,22]. These pipelines typically involve four main steps: data 
acquisition, preprocessing, segmentation, and trait extraction 
[23]. Among these pipelines, point cloud is a commonly used 
3D data representation because of its effective representativeness 
of object geometry and topology, efficient data storage, and scal-
able processing [24].

From a data processing standpoint, point cloud-based pipe-
lines for tree modeling are broadly categorized into geometry- 
and learning-based approaches. A prominent tree modeling 
method within the geometry-based paradigm is quantitative 
structural modeling, which aims to reconstruct a quantitative 
structure model (QSM) of trees by capturing essential topology, 
geometry, and volume properties, including branch quantity, 
length, volume, angle, and size distribution. The development of 
QSM methods has been an active research area for the forestry 
community, and these methods have demonstrated impressive 
performance in forest volume estimation [25,26], above-ground 
biomass (AGB) measurement of different tree species [27], and 
tree species identification [28,29] and forest radiation transmis-
sion simulation [30]. Existing QSM methodologies can be clas-
sified into two primary categories: segmentation-based and 
skeleton-based. Segmentation-based approaches entail initial 
segmentation of the tree point cloud into smaller subsets, fol-
lowed by procedural connection to reconstruct the tree’s topo-
logical structure [31–34]. An illustrative example is TreeQSM 
[34], which hierarchically transforms point clouds into a collec-
tion of cylinders to characterize tree topology, geometry, and 
volume. However, a notable limitation of segmentation-based 
methods is their susceptibility to input data quality, potentially 
compromising robustness when faced with issues such as outliers 
or missing data due to occlusions. In contrast, skeleton-based 
methods directly extract skeletal curves from raw input point 
clouds [35–38]. AdQSM [39], a novel QSM model based on 
AdTree [40], employs a skeleton-based approach and a distance-
weighted cylinder fitting to precisely reconstruct tree branches 
from individual point clouds.

Learning-based processing pipelines utilize extensive 3D 
point cloud data and employ ML or DL models to extract robust 
features and relationships, yielding more dependable, generaliz-
able, and precise outcomes. There is a growing body of research 
focused on developing 3D ML/DL models for organ-level seg-
mentation, which have proven to surpass traditional methods in 
segmentation accuracy, thereby enhancing characterization per-
formance across diverse crops, including tree [7,41–44] and field 
crops [45–47]. Supervised training of a reliable ML/DL model 
demands a vast amount of annotated data, posing substantial 
challenges for 3D point cloud analyses. To mitigate the challenge 

of extensive data annotation, weakly supervised methods (e.g., 
Eff-3DPSeg) were proposed to reduce the data annotation bur-
den for accurate and robust model training [48]. Although 
notable performance was observed, challenges remained in the 
selection of representative points for annotation and the quality 
(e.g., point cloud completeness and noises) of raw point clouds 
for processing. Further research is required to address these limi-
tations for the adoption of nonsupervised methods for efficiently 
training reliable models for 3D point cloud analyses.

For apple tree characterization, previous research largely 
focused on particular facets, such as tree branch detection [49], 
fruit detection [42,50], and leaf area analysis [51], rather than 
a holistic examination of traits from the branch to tree levels. 
A recent study first explored the use of TreeQSM for extracting 
branch information of apple trees, examining the efficacy of 
translating analysis methods developed for forestry to agricul-
ture where assumptions in tree architecture and density would 
be different [49]. Experimental results showed the best accu-
racy of 88% in detecting and counting the first-order (i.e., 
primary) branches and that of 92.57% in estimating the num-
ber of primary branches, demonstrating certain successes of 
using TreeQSM and TLS data for the characterization of fruit 
trees such as apple trees. However, the study highlighted sev-
eral major limitations of using TreeQSM for apple tree char-
acterization. First, high-resolution TLS devices and calm 
weather were needed to resolve granular details of apple trees 
that can be characterized by QSM. Second, TreeQSM used 
random seeds to initiate the tree reconstruction, presenting 
large variation and error in tree trait measurements. This issue 
dramatically hinders the use of TreeQSM (or other QSMs 
involving reconstruction randomness) for tree crop charac-
terization in agricultural research and management where 
consistent measurements are required to understand tree 
growth and guide field operations. It should be noted that all 
these results and findings were obtained from apple trees with-
out trellising, which shared considerable similarities with 
natural trees and simplified additional challenges because of 
data quality issues (e.g., incomplete point clouds due to high 
occlusions) caused by the high tree density in trellising systems. 
Therefore, new methodologies must be developed to address 
the challenges of characterizing apple trees for management 
applications in modern orchards with trellised tree training.

The study’s primary contribution was to develop a compre-
hensive characterization pipeline (referred to as AppleQSM 
hereafter), leveraging TLS point cloud data, for the quantitative 
analysis of architectural traits for tree fruit crops that are trained 
using modern practices such as high-density apple orchards. 
While acknowledging the existence of some parallels between 
this work and established QSM methods, a detailed comparative 
analysis was conducted to scrutinize bias and the extent of ran-
domness, illuminating the distinct advantages that our meth-
odology offers when applied within the realm of agricultural 
research and applications. Additionally, this study aimed at 
establishing essential performance benchmarks and raising 
inherent challenges associated with data quality. Notably, the 
study stands out as one of the first endeavors in tree crop 
research to critically examine a fundamental bottleneck within 
the domain of 3D tree QSM, specifically from the perspective 
of data quality. By doing so, it not only identifies the core issues 
but also offers potential pathways to address these data-related 
challenges. This contribution marks a significant step forward 
in advancing the field of tree crop research, promising valuable 
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insights and directions for future investigations in agricultural 
science and technology. The datasets and pipeline codebase in 
this study are publicly available to facilitate further research and 
promote technology adoption in production management. The 
specific objectives included (a) the development of a graph-
based characterization pipeline encompassing tree structure 
segmentation and tree- and branch-level analysis, (b) an evalu-
ation of the pipeline’s performance at both tree and branch lev-
els, and (c) an investigation into the principal constraints 
affecting characterization performance to shed light on potential 
avenues for future advancements.

Methods
AppleQSM was developed to characterize apple tree architecture 
using full-view point clouds. It consisted of four modules: data 
preprocessing module, tree instance segmentation module, tree 
structure segmentation module, and architectural trait extraction 

module (Fig. 1). The meaning of symbols and the parameter val-
ues getting involved in the pipeline were summarized in Tables 
S2 and S3.

Data preprocessing module
Preprocessing of these registered point clouds involved the 
removal of extraneous data. Given the extensive field of view 
of the laser scanner (360° by 300° per location) and the mul-
tiple scanning locations, the collected data often included 
irrelevant objects such as neighboring row trees, trellis wires, 
and tree covers. To focus on the row of interest, the region of 
interest (ROI) was manually selected to contain only the point 
clouds associated with trees in the desired row. Raw point 
data were denoised using the statistical outlier removal (SOR) 
with the default parameters implemented by CloudCompare 
(CloudCompare, version 2.11.3). In addition, point data 
related to tree covers and trellis wires were manually removed 
from the ROI.

Fig. 1. AppleQSM workflow. The ROI was manually selected from the raw point cloud data and denoised using the SOR in CloudCompare. The tree instance segmentation 
module takes the ROI as input and segments each tree as an individual point cloud. Each individual tree was processed by the tree structure segmentation module to separate 
the trunk and branches for trait extraction.
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Tree instance segmentation module
For each tree row, individual apple trees were automatically seg-
mented using a computationally efficient algorithm based on 
geometric features [52]. The algorithm iteratively searched for 
linear units, defined as connected point clusters over a cluster-
level linearity threshold, from input point clouds. Linear units 
generally represent stems or branch segments. The algorithm 
then assembled linear units into individual trees based on con-
nectivity and topology. This approach was capable of more 
robustly identifying small stems and thin branches compared 
with existing tree segmentation methods [53].

Tree structure segmentation and refinement module
Tree skeletonization
Structure aware downsampling: The point cloud of an individual 
apple tree typically contained 700,000 points, requiring data 
downsampling to ensure tractable computation in successive 
analyses. Numerous sampling techniques have been devised to 
address the challenges associated with handling vast amounts of 
data [54,55]. However, these methods often exhibit a deficiency 
in incorporating structural awareness during the downsampling 
process. A Hilbert curve (HC)-based downsampling method was 
used to downsample tree point clouds with well-preserved topo-
logical structure and geometric features due to the locality-
preserve property of HC (Fig. S2) [56,57]. In HC H was a limit 
of a sequence of the Hilbert space-filling curves. The kth order 
Hilbert space-filling curve Hk was a bijection between a parti-
tion of [0, 1] and [0, 1]d in d-dimensional space. The tree point 
cloud P =

{

pi
}n

i=1
 was normalized into [0, 1]3, and the bijection 

between 
{

c
�

j

}23k

j=1
 and 

{

cj

}23k

j=1
 was calculated where c′

j
 and cj were 

associated blocks in [0, 1] and [0, 1]3, respectively. A point pi specific 

to block cj was mapped to the center of the block c�
j
= H−1

k

(

cj

)

. A 
histogram was drawn for the mapped points, and Nh data points 
were selected from each nonempty bin (Eq. 1).

NS is the target number of points after downsampling, and 
the number of bins was determined by the order of the HC. 
Intuitively, the selected data points were roughly equally distrib-
uted in the original space and thus capable of preserving the tree 
structure effectively. The downsampled point cloud PD was used 
for the next step.

Laplacian-based skeletonization: A Laplacian-based contrac-
tion method was used to extract the tree skeleton from the 
denoised and downsampled point cloud PD because of its robust-
ness to noise and missing points [58]. The skeletonization was 
achieved by geometric contraction and topological thinning. In 
the geometric contraction, the original point cloud was con-
tracted by iteratively optimizing a linear system. In the topologi-
cal thinning, the contracted point cloud was sampled using 
farthest point sampling (FPS) with a resolution of ϵ to produce 
a sampled point cloud. The selection of the sphere radius could 
critically impact the resolution of the final skeleton points and 
therefore the accuracy of architectural trait extraction. In this 
study, for enhanced generalization amidst tree variability, the 
parameter ϵ was adaptively established based on the length of 
the bounding box’s diagonal of the original tree point clouds. 

The connection of the sampled point cloud was built by inherit-
ing the sample neighbors. The final skeleton P′ was obtained by 
collapsing unnecessary edges until no triangles existed.

Skeleton connectivity refinement: Although the established 
connections within P′ directly indicated a topological relation-
ship, numerous inaccuracies existed, including (a) discontinuity 
between proximate points, (b) false continuity between distant 
points, and (c) circular linkages among points. These inaccurate 
connections would present significant challenges in tree struc-
ture segmentation such as tree trunk identification. To address 
these issues, a biology-aware (BA) refinement method was devel-
oped to improve the skeleton connectivity by using biological 
cues (Fig. S3). An intuitive observation was that the thickness 
gradually diminished along the tree trunk or branch. Based on 
this, the thickness was used to provide a local constraint for cor-
recting skeleton point connectivity.

The BA refinement method first corrected the discontinuity 
of proximate points and false continuity between distant points 
using a distance constraint: a pair of points were connected only 
if their Euclidean distance was smaller than a distance threshold 
dth. The corrected skeleton points were subsequently converted 
into a weighted graph GW, in which vertices were the skeleton 
points and edges represented the point connectivity. The devel-
oped refinement method considered both the thickness and 
Euclidean distance information in the edge weight calculation 
(Eqs. 2 and 3). The minimum spanning tree (MST) algorithm 
was applied on GW to remove redundant and cyclic connections, 
and the MST with the greatest number of vertices was used as 
the coarse tree skeleton PS. While the thickness guarantees local 
smoothness (thickness decreasing pattern) and continuity (con-
nections among proximate points), the Euclidean distance term 
constrains the connections globally by guiding the MST algo-
rithm to find the topologically simplest graph. It should be noted 
that the thickness of a point would be ideally calculated as the 
diameter of a plant tissue. However, due to practical computation 
challenges, the thickness was approximated by point density in 
this study. This was because thicker regions would reflect more 
laser pulses and yield a higher point density that can be approxi-
mated as the reciprocal of the Euclidean distance to its K nearest 
neighbors in P (Eq. 3).

where ei,j represents the weight of the edges between the ith and 
jth points, mi is the estimated density of the ith point, and di,j is 
the 3D Euclidean distance to its jth nearest neighbor. α is the 
weight to balance the local smoothness due to thickness and the 
length information. The first and second terms in ei,j are already 
normalized with respect to itself to avoid any scaling effects. The 
rationale for using the reciprocal of the thickness is to align with 
the MST algorithm optimization goal of minimizing the con-
nection cost. The following trunk and branch segmentation and 
refinement were achieved on PS rather than the input point 
cloud.

(1)Nh =
NS

#Bins

(2)ei,j = �

(

1

mi

+
1

mj

)

+ (1 − �)di,j

(3)mi =
1

1

k

∑k
j=1 di,j
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Trunk and branch segmentation
The trunk of a tree refers to the main wooden axis of a tree in 
botany, which is usually the longest axis of an apple tree. 
According to the botanical definition, the coarse trunk skeleton 
was identified by finding the longest path (i.e., the maximal 
weight) in PS. This required the recalculation of weights in PS 
using Eq. 4 to generate P′

S
. For each point in P′

S
, its path to the 

trunk skeleton root point (i.e., the lowest point in P′

S
) and the 

associated path weight were found using the Dijkstra’s algorithm 
(Eq. 5).

where e′
i,j

 represents the updated weight of the edges between 
the ith and jth points, and Wk is the weight of the path from 
the kth point to the root point in P′

S
.

Trees inherently possess a recursive structure, meaning their 
structural components can be similarly defined across varying 
levels. For instance, the tree trunk, being the longest wooden 
structure that originates from the junction of the tree and ground, 
is mirrored by a primary branch, which forms the longest wooden 
structure among all the tissues that grow from the trunk–branch 
junction. Based on this, the developed trunk identification 
method could be iteratively used to find branches at all levels (e.g., 
primary and secondary). The key to this iterative process was 
to correctly cluster points of all tissues belonging to individual 
branches at the next level after identifying the trunk/branch at 
the current level.

The identification of the primary branch was used as an 
example to describe this iterative process. After tree trunk iden-
tification, the trunk skeleton points were used to form a tube 
space where cross sections were set by using the trunk skeleton 
points as centers with a constant radius R from the lowest to the 
highest points [59]. The tube space was used to retain branch 
points close to the tree trunk, resulting in a simplified trunk–
branch structure for detecting primary branch origin points. 
The trunk skeleton points were removed from the retained 
points, and the resultant points were clustered as the origin point 
groups of individual primary branches using 3D density-based 
spatial clustering of applications with noise (DBSCAN). In some 
cases, skeleton points of nonprimary branches close to the trunk 
might be included in the tube space because of complex branch 
patterns, leading to incorrect primary branch origin clusters. 
Such incorrect primary branch origin clusters were identified 
by a projection distance constraint: Points in the cluster were 
used to fit a 3D line with extended projection to find a possible 
intersection between that cluster and the trunk. The length of 
the extended line was compared to a predefined threshold dext 
to keep valid primary branch origin clusters for successive 
processes.

For each valid primary branch origin cluster, the BA graph 
algorithm was used to identify the optimal MST (i.e., the MST 
with the greatest number of vertices) as the entire branch. Then, 
the primary branch was detected by finding the longest path in 
this MST (Eqs. 3 and 4).

While most primary branch points were assigned to a unique 
primary branch, several skeleton points could be selected for 
multiple primary branches. The multiple selection phenomenon 
mostly occurred if two branch origin clusters were close to each 
other. A maximum direction matching (MDM) method was 
developed to address this issue (Fig. S4). The method was 
inspired by the biological principle that branches typically have 
a smooth growing direction between their segments. The spectral 
clustering algorithm was used to group points that were (a) 
selected multiple times and (b) close to each other into k′ spectral 
clusters, where k′ was the number of selections for each point. 
Denote branch origin cluster points as PB = {PB1, PB2, …, PBk} 
and spectral cluster points as PS = {PS1, PS2, …, PSm}. For each 
branch origin cluster and spectral cluster pair, PBt and PSk with 
the minimum Euclidean distance between these two clusters 
were identified. Specifically, two 3D vectors were sequentially 
generated among PBt−1, PBt, and PSk, and the angle between these 
two vectors was computed to represent the growing direction. 
The spectral clusters were uniquely matched to branch origin 
clusters with the smoothest growing direction (i.e., the minimum 
angle).

Due to the incomplete original point cloud data, the seg-
mented trunk and branch skeleton points are not guaranteed to 
present topological correctness and centeredness. Therefore, a 
skeleton refinement operation was used to obtain improved 
skeleton points.

Trunk and branch refinement
The cylindrical prior constraint (CPC)-based method was used 
to optimize the skeleton points of identified tree trunk and pri-
mary branches [60]. The CPC-based optimization employed two 
key constraints by exploiting the cylindrical shape prior to achiev-
ing topologically correct and well-centered skeleton points: (a) 
the L1 local median constraint to ensure the centeredness of the 
median points in a local point cluster and (b) the equidistant 
constraint to reinforce the median point close to the cylindrical 
axis of symmetry (Eq. 6).

where v is the optimized local median, X =
{

xi
}n

i=1
 is a local 

point set, σ is the variance of point-wise distance between X and 
the current v, and λ is a hyperparameter that balances these two 
constraint conditions.

For each skeleton point in PS, a local region was selected from 
the input points P by using the skeleton point as the center with 
a constant radius R′. This local region was further divided into 
cross sections sequentially (see points in different colors in Fig. 
S5). The CPC-based optimization was applied to each cross sec-
tion to refine the skeleton point as the center of the cross section. 
Additionally, the radius of the cross section could be computed 
as the average Euclidean distance from the center to all points in 
the cross section. A local center correction operation (i.e., 
RANSAC algorithm) was applied within each local region to 
filter out the incorrect skeleton points that deviated from the 
central axis. To further enhance the smoothness of the skeleton 
points, a semi-global center correction operation (i.e., RANSAC 
algorithm) was applied to every K1 consecutive skeleton points. 
It was found that this semi-global center correction operation is 
considerably helpful for sparse areas. Finally, a cubic smoothing 

(4)e
�

i,j = �

(

mi +mj

)

+ (1 − �)di,j

(5)
Wk =

∑

e
�
∈Ek

e
�

i,j

(6)v = argmin

m
∑

i=1

∣ v − xi ∣ + ��
2
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spline was fit using inlier centers and M points were evenly 
sampled from the spline as the refined skeleton points. The asso-
ciated radius of sampled points was determined from the average 
radius of N nearest points.

Architectural trait extraction module
Architectural traits important to tree crop load management 
were extracted using the input points P and refined tree trunk 
and branch skeletons at both the tree and branch levels. The 
tree-level traits included tree height and trunk diameter, and 
the branch-level traits included branch diameter and angle with 
respect to the tree trunk (i.e., branch inclination angle).

Tree-level architectural traits: Tree height was obtained by 
subtracting the Z value of the lowest point from the highest 
point in the refined trunk and adding 60 cm to account for the 
removed black cover. The trunk diameter was estimated using 
the bottom cross section consisting of points that were selected 
from the input point cloud P with the z-axis coordinate that is 
below a specific height. This height was determined by a con-
stant value Cz to the z-axis coordinate of the lowest point. To 
separate the trunk points from potential bottom branch points, 
a 3D DBSCAN clustering algorithm was applied to the bottom 
cross section. The largest group of points was considered the 
trunk points and was used for robust 2D ellipse fitting. The 
trunk radius was calculated as the average length of the major 
and minor axis of the fitted ellipse.

Branch-level architectural traits: Branch diameter and branch 
inclination angle were determined in an average fashion in order 
to minimize measurement errors. For each branch, the branch 
skeleton points were sorted based on their Euclidean distance to 
the trunk, and a local trunk segment was generated by selecting 
the refined trunk skeleton points that lie within the branch. A 
3D trunk vector was generated by the RANSAC 3D line fitting 
algorithm, and branch vectors were produced between each 
neighboring branch skeleton points for branch inclination angle 
calculation. The final branch inclination angle was measured as 
the average 3D angle between the first K2 branch vectors and the 
sliced trunk (Eq. 7). Branch diameter was computed as the aver-
age of the radius of the first branch K3 skeleton points.

where ‖ ⋅ ‖ is the norm of a vector, Vbi is ith branch vector, and 
Vt is the local trunk vector. The rationale for using the local 
trunk vector for branch inclination angle calculation is the 
observation that the tree trunk is typically not straight-up, 
meaning that a global trunk vector might not well represent the 
local trunk region and lead to inaccuracy in the computed incli-
nation angle.

Experiments

Experiment orchard and field data collection
Mature apple trees grown at Cornell Orchards (latitude: 
42.445 N, longitude: 76.462 W) in Ithaca, NY, USA, were used 
in this study (Fig. 2). These trees were planted at a spacing of 
3.66 m (12 feet) by 0.91 m (36 inches) in 2011 and trained in 
the tall spindle system. A total of 84 apple trees from three 
tree rows were used for data acquisition and characterization, 
including row 13 (9 trees) and 15 (41 trees) of “NY1” on M9 

rootstock and row 16 (34 trees) of “NY2” on B.9 rootstock 
(Table 1).

As this study focused on tree architecture characterization, 
data acquisition trials were conducted during the offseason 
(three data collections from February to April 2022) with the 
maximal visibility of tree trunks and branches. A TLS (FARO 
Focus S350, FARO Technologies Inc., Lake Mary, FL, USA) with 
a 360° (horizontal) by 300° (vertical) scanning view was used to 
collect colorized point clouds of the apple trees (Fig. 2B). The 
scanner was mounted on a tripod at approximately 1.5 m above 
the ground and configured with a resolution of 6.1 mm at 10 m. 
The scanning of row 13 was meant to provide optimal data qual-
ity by maximizing the overlapping between neighboring scans, 
which was a trial to understand the trade-off between the num-
ber of scans and the data quality. In the following data collection 
for rows 15 and 16, the scanning positions were designed to 
maximize the scanning efficiency and data quality simultane-
ously, where the distance of two neighboring scans is around 
10 m. In addition, scan references were strategically deployed in 
the field to improve the point cloud quality (Fig. S6).

Pipeline evaluation
Quantitative metric
To evaluate the performance of the developed pipeline, reference 
measurements were obtained for all the traits using the protocols 
by the apple research community and industry (Table 2). Tree 
height and trunk diameters were measured for all 84 apple trees 
in this study, whereas branch diameter and inclination angle 
were measured for 106 branches from 9 apple trees in row 13. 
In addition, the number of branches was manually counted from 
collected point clouds using CloudCompare (CloudCompare, 
version 2.11.3).

Robust linear regression analyses were performed between 
pipeline-extracted measurements and reference values. Root 
mean square error (RMSE) and the coefficient of determination 
(R2) were used as metrics. In addition, mean absolute error 
(MAE) and mean absolute percentage error (MAPE) were cal-
culated to comprehensively evaluate the accuracy of the devel-
oped pipeline. All analyses and calculations were conducted 
using MATLAB (version R2022a). While the pipeline was devel-
oped using a laptop with Intel Core i7-10870H with CPU run-
ning at 2.20 GHz, it is compatible with any laptops that support 
the specified MATLAB.

Comparison with TreeQSM and AdQSM
The latest implementation of TreeQSM (version 2.4.1) and 
AdQSM (version 1.7.5) was applied to characterize the apple trees 
under investigation, with a specific focus on quantifying the num-
ber of primary branches. To determine the optimal input param-
eters for TreeQSM, a meticulous exploration of critical parameters 
was conducted, including PatchDiam1, PatchDiam2Min, and 
PatchDiam2Max, among others. The search process encompassed 
12 distinct parameter combinations generated by the define_input 
function, as recommended by established guidelines [61], for each 
tree. Within this search, five independent models were generated 
for each unique parameter combination. The combination that 
yielded the most favorable QSMs, as determined by the default 
average cylinder point-model distance, was ultimately selected 
as the definitive input parameter configuration. Subsequently, 
employing these optimal input parameters, 50 runs were executed 
for each tree, and the distribution of primary branch counts was 
computed. The two critical parameters Height_Segmentatioin and 

(7)� =
1

K2

K2
∑

i=1

arc cos
Vbi ⋅ Vt

∥Vbi∥∥Vt∥

D
ow

nloaded from
 https://spj.science.org on O

ctober 16, 2024

https://doi.org/10.34133/plantphenomics.0179


Qiu et al. 2024 | https://doi.org/10.34133/plantphenomics.0179 7

Cloud_Paramter were set as default by recommendation for 
AdQSM.

Results

Tree instance and structure segmentation
Point cloud downsampling and skeletonization
While the tree instance segmentation algorithm fulfilled the 
need, it was not the focus of this study, and a more detailed evalu-
ation will be available in a separate study.

Compared with traditional methods such as random and grid 
downsampling, the HC-based downsampling method was more 
effective and efficient in preserving the topological structure and 
geometrical features of original point clouds at the same down-
sampling rate (Fig. 3, top). In general, a total of 50,000 points per 

apple tree would allow tractable computation in the tree structure 
segmentation and architectural trait extraction. In this study, the 
average number of points for apple trees was 700,000, requiring 
an acute downsampling rate (i.e., 93%) that presented challenges 
to preserve needed information. The HC-based method aimed 
to balance the representativeness of points of different structure 
components with varying point densities during the downsam-
pling process: retaining more points from a region with a lower 
point density (e.g., branches) and fewer points from a region 
with a higher point density (e.g., tree trunk itself) (see the his-
togram in Fig. S3). Therefore, the resultant point clouds could 
maximize the preservation of detailed topological information 
(especially at the branch level) and achieve the desired down-
sampling rate simultaneously. Neither random nor grid down-
sampling showed such an advantage. Random downsampling 

Fig. 2. Experimental field and collected point cloud representatives. Experiments were conducted in nine blocks in three rows in Cornell Orchard.

Table 1. Summary of apple trees and point cloud data from the three crop rows used in this study

Row ID Cultivar #Trees Age

Height (cm) Trunk diameter (mm) #Point cloud per tree

Min Max Mean Min Max Mean Min Max Mean

13 NY1 
(SnapDragon)

9 12 322.58 386.08 355.04 46.00 60.50 55.61 662,830 1,363,933 912,007

15 NY1 
(SnapDragon)

41 12 241.30 340.36 313.10 42.00 68.00 53.40 130,951 2,129,178 481,187

16 NY2 
(RubyFrost)

34 12 276.86 355.6 312.27 42.5 68.00 56.78 280,998 680,007 475,853
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was nondeterministic, so downsampled point clouds might or 
might not contain all topological details for processing. Grid 
downsampling was limited by its inability to simultaneously 
maintain a high downsampling rate and preserve topological 
details. This limitation compromised the quality of results, 
particularly when high downsampling rates were employed. 
Specifically, the approach of grid down sampling that averages 
point distributions within each grid led to a misalignment 
between skeleton points generated from grid-downsampled 
point clouds and the original point clouds, a problem particularly 
pronounced when branches were sparsely populated with surface 
points.

Quantitative evaluation confirmed the superior performance 
of the HC-based downsampling method from qualitative obser-
vations (Table 3). This approach achieved on average 47,000 
downsampled points per original apple tree point cloud, exhibit-
ing the highest computational tractability among the three meth-
ods tested. Moreover, the HC-based method excelled in primary 
branch identification within the downsampled point clouds. It 
demonstrated a true-positive rate of 87%, surpassing both grid 
and random downsampling methods by 4% and 12%, respec-
tively, while maintaining a false-positive rate of 5%, closely aligned 

with the lowest rate of 4% achieved by random downsampling. 
This balanced performance was attributed to the locality-preserv-
ing property of HC-based downsampling. In comparison, grid 
and random downsampling methods presented either high or 
low true- and false-positive rates concurrently due to their inabil-
ity to optimize the representativeness of downsampled points.

Skeleton connectivity refinement
By taking into account both the thickness and length cues, the 
developed BA graph could generate optimal MSTs where points 
were connected to obey the rules of the biological topology of 
a tree (Fig. 4). Raw skeletons largely maintained the topological 
structure of trees, but it was obvious that there were many defec-
tive connections such as disconnections between neighboring 
points and cyclic connections caused by errors in the FPS pro-
cess. When they were used to form an unweighted graph for 
MST searching, these defective connections led to disruptions 
in tree skeleton topology and ultimately incorrect branch seg-
mentation. This occurred because the MST searching method 
aimed to connect all vertices in a graph using the minimum 
number of edges (i.e., shortest tree). When edges were with the 
same weight, each graph vertex greedily established as many 
connections as possible without regard for topological correct-
ness, leading to disordered connections (Fig. 4). These disor-
dered connections originated from a point that could extend 
significantly to its surrounding points and destroy the topologi-
cal structure. In contrast, the BA graph demonstrated the capa-
bility of producing the optimal MST with correct connections. 
The local thickness term guided the MST algorithm to find a 
path including more points with a larger thickness, which are 
likely to be trunk points. Simultaneously, the Euclidean distance 
term directs the MST algorithm toward finding the shortest 
path, which ensures that the connections are established sequen-
tially between neighboring points and preserves the topological 
structure. By balancing the thickness and length information, 
the developed method utilized biological constraints to ensure 
the smoothness (therefore topological correctness) of continu-
ous connections between skeleton points.

Trunk and branch segmentation
The developed pipeline achieved a decent accuracy in trunk and 
branch segmentation (Fig. 5). Overall, the trunk segmentation 
was constantly successful and insensitive to downsampling strat-
egies. This was because all three downsampling methods kept 
sufficient points of tree trunks for skeletonization and segmenta-
tion (see Fig. 3 for a zoom-in view and Fig. 5 for various trees). 
The branch segmentation was much more challenging than the 
trunk segmentation because branch skeletons typically con-
tained less reliable points and deviated from the original point 
clouds. There were two potential reasons. First, the branch 
points were often incomplete because of the resolving power 
limitation of TLS, branch occlusions, and undesirable weather 
conditions. Second, the downsampling process further reduced 
the points for branches, especially those with high occlusions 
or small diameters. The sensing limitations could not be easily 
addressed by data processing, but the downsampling process 
played a critical role in branch segmentation (e.g., balanced 
true- and false-positive rates through HC-based downsam-
pling). In point clouds downsampled by the HC-based method, 
most primary branch origin points were successfully grouped 
into different clusters. With the correct branch origin clusters, 
the BA graph with the MST algorithm was iteratively used for 

Table  2. The ground-truth field measurements and the cor-
responding measurement protocol. A visual illustration of the 
branch diameter and inclination angle measurement in Fig. S7.

Architectural trait
Measurement 

protocol #Samples

Tree height The vertical 
distance from the 
highest point of 
the tree to the 
ground

84 trees

Trunk diameter The average of two 
orthogonal 
measurements 
with a caliper at 
5–10 cm above 
the black cover

84 trees

Branch diameter A single measure-
ment with an 
equilifruit disc 
(Valent LLC, USA) 
at 5 cm away from 
the trunk–branch 
junction

106 branches 
from 9 trees in 

row 13

Branch inclination 
angle

A single measure-
ment with a digital 
angle finder 
(CamRad 82305, 
Guilin GemRed 
Sensor Technology 
Co., Ltd., China) in 
the crotch as close 
to the trunk and 
branch as possible

106 branches 
from 9 trees in 

row 13
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segmenting branches for the entire tree, resulting in an accuracy 
of 87% for branch segmentation. The primary branches were 
further segmented by finding the maximum path in individual 
branch MSTs.

The tube space for branch pruning was also important to the 
branch segmentation. An unsuitable tube radius might result 

in a disproportionate number of branch origin points, adversely 
affecting the number of branch origin clusters (Fig. S8). When 
the tube radius was excessively small, it led to the selection of 
minimal branch skeleton points, which the 3D DBSCAN algo-
rithm was prone to categorize as noise. Conversely, an overly 
large tube radius resulted in an increased number of branch 

Fig. 3. Downsampled point cloud and extracted skeletons using Hilbert curve, random, and grid downsampling algorithms.

Table 3. Branch recall information. The number of segmented branches is based on the skeleton extracted from the downsampled point 
cloud using Hilbert curve, random, and grid downsampling algorithms. The ground-truth branch count is 332.

Downsampling method

#Points True positive—correctly 
segmented branches

False positive—wrongly 
segmented branches

Major of incorrect 
segmentationMin Max Mean

Hilbert curve 45,428 51,306 47,554 288 (87%) 15 (5%) Branch intersection 
and noise

Grid 45,489 52,579 48,560 275 (83%) 20 (6%) Branch intersection 
and oversegmentation

Random 50,000 50,000 50,000 248 (75%) 13 (4%) Branch intersection 
and oversegmentation
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Fig. 4. Skeleton connectivity and the optimal MST generated by unweighted graph and MST and BA graph and MST algorithm. Points and edges in unweighted MST have equal 
weight represented by the same blue dots. Points in BA MST have weights as an approximation of the local thickness estimated by naïve k-nearest neighbors (KNN) distance. 
Edges in BA MST have weights consisting of the weighted sum of the local thickness and Euclidean distance between two vertices.
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skeleton points used for clustering, thereby heightening the 
likelihood of erroneous cluster formation due to branch inter-
sections and noise.

Two principal issues occurred with branch origin clustering 
due to absent points at the junction (see Branch origin clustering 
in Fig. 6). Overclustering arose when gaps manifested in the 
branch–branch junction, while underclustering was observed 
when these gaps were present in the trunk–branch junction. In 
addition, incorrect branch segmentation emerged with branches 
presenting complex patterns (see Entire branch identification in 
Fig. 6), typically observed at branch intersections where two or 
more branches entangled with each other. The MDM method, 
employed for post-processing, might not always correctly gener-
ate entire branches, especially with complex branch patterns. 
Consequently, this led to the failure of spectral clustering and 
ultimately unsuccessful corrections.

Trunk and branch refinement
The trunk and branch refinement process improved the overall 
quality of coarse trunk and branch skeletons in terms of topologi-
cal correctness, centeredness, and spatial distribution (Fig. 7). 
The unrefined trunk and branch skeletons showed three critical 
issues (Fig. 7A). First, skeleton points were not well-centered and 
biased toward trunk and branch boundaries with most scanned 
points. Second, skeleton points were not uniformly distributed, 
presenting large gaps that could be problematic in successive 
analyses. Last, the thickness measured at the cross section of 
skeleton points (represented by color) showed unexpected fluc-
tuations, violating the smoothness principle of trunk and branch 
diameter changing patterns along the length in biology.

The CPC-based optimization improved the thickness smooth-
ness and centeredness of skeleton points by effectively optimizing 
the equal distance and variance objective function (Eq. 6). The 
local center correction operation further removed erroneous cen-
ters, resulting in a more topologically correct skeleton with a more 
consistent change of thickness (Fig. 7B). While the local center 
correction operation provided the context of trunk growing direc-
tion within a small segment (from Fig. 7A to Fig. 7B), there were 

still defective points because the CPC-based optimization was 
data-driven and fundamentally dependent on input point distri-
bution. When noisy points took a large portion of the input, the 
results generated by the CPC-based optimization were biased 
toward those noisy points (Fig. 7B). The semi-global center cor-
rection operation successfully eliminated these deviated points 
in the context of overall trunk growth (from Fig. 7B to Fig. 7C). 
The processed skeletons showed an improved topological struc-
ture and thickness-changing pattern (Fig. 7C). Finally, the cubic 
spline sampling method ensured an evenly spaced distribution 
of points in the skeleton (Fig. 7D).

Performance of architectural trait extraction
Quantitative evaluation
The developed characterization pipeline was evaluated at the 
tree and branch levels (Fig. 8). Tree height and trunk diameter 
calculated using the developed pipeline were highly correlated 
(R2 = 0.92 and 0.83) with manual measurements with an MAE 
of 6.1 cm and 4.71 mm and a MAPE of 1.94% and 8.3%, respec-
tively, indicating high accuracy of measuring architectural traits 
at the tree level. Few outliers were observed in trunk diameter 
measurement for various reasons such as the tree rootstock 
black cover interference and raw point cloud quality (Fig. S9). 
These presented challenges in developing a universal solution 
to address all potential edge cases. Additionally, the pipeline 
achieved a decent performance (R2 = 0.69, MAE of 7.48°, and 
MAPE of 10.83%) for measuring branch inclination angles with 
an overall correlation of 0.69, suggesting that the pipeline was 
able to provide good angle estimations with reasonable varia-
tions. The relatively lower correlation (i.e., 0.69) was primarily 
due to challenges in the field measurement protocol (Fig. S10). 
Consistent angle measurement in the field was too difficult 
because the exact 2D projection angle between branches and 
tree trunks could not be easily defined and accessed in practice. 
Consequently, the accuracy of manual measurements using a 
digital angle finder was compromised. Furthermore, branch 
inclination angles were computed in 3D space using point 
clouds, which differed from the field measurement protocol as 

Fig. 5. Trunk and branch structure segmentation results generated by the developed pipeline and TreeQSM. In particular, two results obtained from TreeQSM were selected 
out of 50 independent runs. Tree 1 and Tree 2 exhibit simpler branch structures with fewer branches, while Tree 3 and Tree 4 display more complex branch structures with a 
higher number of branches. The black boxes highlight the branch segmentation results that are inconsistent within TreeQSM runs.
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a 2D projection. This measurement protocol difference could 
potentially increase the quantitative error. To investigate the 
effects of these challenges, the developed pipeline was also 
applied to point clouds of simulated trees. Experimental results 
showed a considerably higher correlation (R2 = 0.9) with 
reduced MAE and MAPE, suggesting that the relatively large 
measurement difference was due to imperfect manual measure-
ments rather than the pipeline itself (Fig. S12). An additional 
experiment was conducted for branch inclination angle, using 

trees specifically planted for a dedicated breeding program (Figs. 
S1 and S11 and Table S1). For more comprehensive information 
and details regarding this experiment, please refer to the 
Supplementary Materials (Case Study: Characterization for 
Breeding Programs).

The pipeline exhibited large errors in branch diameter esti-
mation primarily because of incomplete branch point clouds. 
The incompleteness of branch point clouds dramatically limited 
the accuracy of branch diameter measurement. This was because 

Fig. 7. Trunk refinement illustration and results. (A) Coarsely segmented trunk skeleton with a weight estimated by the KNN distance. (B) Output from CPC optimization and 
local RANSAC. (C) Output from semi-global RANSAC. (D) Final output after cubic spline sampling.

Fig. 6. Representative of problematic branch clustering and segmentation. Under- and overclustering happened because gaps exist in the original point cloud. Incorrect entire 
branch segmentation happened because of branch intersection.
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the diameter measurement relied on circle or ellipse fitting that 
required geometric completeness of points. If only a portion of 
points were provided, these fitting algorithms were likely to 
perform poorly and the estimated branch diameter tended to 
be smaller than the field measurements, resulting in a large 
diameter estimation error (e.g., large MAE and MAPE values). 
In fact, human operators could have difficulties of providing 
accurate diameter estimation using CloudCompare given highly 
incomplete point clouds (see point clouds in Figs. 6 and 7). 
However, the pipeline demonstrated a correlation (R2 = 0.77), 
indicating the efficacy of the CPC-based optimization to tackle 
incomplete point clouds for branch diameter measurement to 
a certain extent.

Comparison with TreeQSM and AdQSM
The distribution of primary branch counts has unveiled a note-
worthy challenge—undesirable nondeterministic outcomes 
(Table 4 and Fig. S13). Even in the relatively straightforward 
task of counting primary branches, TreeQSM exhibited con-
siderable variability in the number of primary branches (Fig. 
5). This variability underscores the inherent stochastic nature 
of the model’s outcomes. Intriguingly, when applied to a simu-
lated tree, TreeQSM demonstrated consistency in primary 
branch counting. This observation lends support to the notion 
that the processing performance bottleneck primarily stems 
from data quality rather than the underlying processing algo-
rithms. Additionally, while AdQSM demonstrated consistent 
primary branch recall, it cannot address the reconstruction of 
the trunk–branch junction area (thereby the inaccurate branch 

diameter estimation) and is considerably sensitive to noise 
when reconstructing higher-order branches (Figs. S14 and S15 
and Table S4).

In the agricultural sector, where activities such as fruit har-
vesting and branch pruning are heavily reliant on consistency 
and precision, the presence of nondeterminism poses a substan-
tial challenge to the seamless integration of QSM methods like 
TreeQSM. Consequently, addressing the issue of nondetermin-
ism becomes a pivotal endeavor, essential for unlocking their full 
potential in supporting large-scale agricultural applications. The 
unique characteristic of the developed pipeline lies in its ability 
to consistently segment primary branches and characterize 
the architectural traits of apple trees. This consistency and 

Fig. 8. Trunk- and branch-level architectural trait estimation results and quantitative performance evaluation. RLR, robust linear regression.

Table 4. Primary branch recall information from the developed 
pipeline, TreeQSM, and AdQSM. The total manual measured 
number of primary branches is 332.

Method

Branch counts

Min Max Mean

Developed 303 303 303

TreeQSM 383 405 393

AdQSM 377 377 377
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accurate reconstruction is of paramount importance as it fortifies 
the reliability and robustness of characterizations—an indispens-
able factor when considering the application of such methodolo-
gies within the apple industry, especially in the context of 
large-scale machinery operations.

Discussion

Overall pipeline parameterization and new 
opportunities to domain research
The developed pipeline demonstrated a satisfactory perfor-
mance on 3D characterization of apple trees that exhibited varia-
tion in overall topological structure and branch patterns. This 
was made possible by leveraging improvements of all individual 
steps, including the HC-based downsampling strategy, the BA 
graph, and the CPC-based optimization process.

The HC-based downsampling strategy enabled the use of a 
limited number of points to represent a topologically complete 
downsampled tree structure, ultimately improving both the effi-
ciency and accuracy of the characterization process. This downs-
ampling method divided the entire point cloud of a tree into 
small grids and treated the number of points in each grid as the 
region density, allowing the curve to approximate trunk and 
branch regions based on point density. The “Iteration” parameter 
plays a critical role in the downsampling process, determining 
the resolution of the downsampled tree. A higher iteration level 
divides the original point cloud into smaller grids, resulting in a 
higher resolution downsampled tree that preserves features of 
sparse regions, such as occluded branch origin areas and tiny 
branches, more effectively.

The developed BA graph offered improved performance than 
conventional methods (e.g., unweighted graph) by incorporating 
biology constraints such as local thickness and Euclidean dis-
tance. The weights of these constraints were crucial in determina-
tion. A large weight for thickness guided the MST algorithm to 
select a path that included more points with a larger thickness, 
meaning that points in denser regions were more likely to be 
chosen, such as points in trunk regions and junction regions. 
However, it should be noted that the thickness of points was 
approximated by the region density, which might not always be 
an exact indicator of thickness due to data noise. Similarly, a large 
weight for length directed the MST algorithm to find the longest 
path, which could result in a long side branch being erroneously 
identified as part of the trunk.

While showing a certain efficacy of refining trunk and branch 
skeletons, the CPC-based optimization in this study was not as 
effective as the original research [60]. This was due to the signifi-
cant difference in point cloud quality between the two studies. 
The original research evaluated the performance of the CPC-
based optimization on a synthetic dataset with four separate 
perturbations, including different resolutions, noise, gaps (i.e., 
missing points), and varying point densities. However, the tree 
dataset used in this study contained a compounded perturbation. 
Therefore, the assumptions and parameters of the CPC-based 
optimization were examined more rigorously, and it was found 
that the CPC-based optimization was sensitive to model param-
eters and point geometry assumptions. In theory, the CPC-based 
optimization assumed taking a spherical point cloud as a segment 
to produce the best-optimized center because it optimized the 
minimum Euclidean distance and variance. However, in practice, 
trunk and branch cross-sections were cylindrical. To approximate 
the geometry assumption, the depth of trunk segments and 

branch cross-sections must be much smaller than their radii. 
Otherwise, the optimization was hard to converge.

The developed 3D characterization pipeline, due to its 
improved measurement accuracy, objectivity, and throughput, 
holds significant potential for employing TLS and geometry-
based methods to assess fruit tree architectural traits at tree and 
branch levels. Specifically, for apple research and production, 
this pipeline would enhance crop load potential prediction, 
offering both accuracy and efficiency, crucial elements for preci-
sion crop load management. Estimating crop load potential 
during the off-season is key to guiding tree pruning and crop 
thinning during the growing season. Traditional mechanical 
pruning, relying heavily on human experience without quantita-
tive data, often leads to imprecise pruning and consequential 
profit loss. The ability to accurately estimate apple crop potential 
enables precise mechanical pruning, optimizing which and how 
many branches to prune, thereby maximizing profits and ensur-
ing high-quality apple production. Furthermore, knowledge of 
apple crop load potential aids in determining appropriate chem-
ical spray applications in chemical crop thinning, achieving 
effective crop load reduction while minimizing environmental 
harm. Additionally, the pipeline was considered an effective tool 
for accurate and high-throughput measuring of branch inclina-
tion angles, potentially useful for large-scale genetics studies in 
tree architecture.

Limitations of the developed  
characterization pipeline
Hardware limitations
Apple tree point clouds, captured using TLS under field condi-
tions, furnish a detailed 3D depiction of the trees, facilitating 
the characterization of architectural traits at both tree and 
branch levels. Despite TLS’s ability to address occlusion issues 
inherent in 2D imaging systems, the acquired point clouds 
often lack comprehensive geometry, particularly for finer 
structures like branches. This is attributed to several factors, 
such as inadequate resolution and precision settings in the 
TLS configuration, harsh weather conditions like strong winds 
(causing issues in registering moving objects from multiple 
scans) and variable sunlight (causing issues in registering 
objects with color appearance variances from multiple scans), 
and the intricate intersections of tree branches. While enhanc-
ing the resolution and precision of TLS could improve accuracy, 
it prolongs scanning time, thereby constraining phenotyping 
throughput. One potential solution involves the use of a self-
navigating robot platform equipped with mounted laser scan-
ners to parallelize point cloud collection and registration, a 
method that would greatly benefit large field applications due 
to its efficiency [62].

Traditional algorithm limitations
The devised characterization pipeline demonstrated exceptional 
performance on simulated trees furnished with complete point 
clouds (Fig. S12), underscoring that the hurdle for granular 
branch trait characterization lies not within the geometry-based 
methods themselves but within the quality, particularly the com-
pleteness of the point clouds. The geometry-based analytical 
methods hinge on explicit data representation and geometric 
features in point clouds. Consequently, if the data representation 
is flawed or fails to provide sufficient geometric features, the 
geometry-based methods become inadequate to yield satisfac-
tory results.
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The point cloud registration, dependent on point geometry 
and color information, faces obstacles under field conditions, 
often struggling to generate a complete point cloud. Environmental 
factors such as wind and sunlight pose significant challenges to 
point cloud registration, inducing inconsistencies in the geometry 
and color of identical points. Wind-induced tree deformation 
results in inconsistent geometry information for the same points, 
instigating nonrigid transformations. Similarly, the Sun’s move-
ment throughout the data collection process generates varying 
illumination and shadow effects, leading to changes in RGB color 
for the same area. These inconsistencies and nonrigidities com-
plicate point cloud registration to seamlessly integrate points 
captured from multiple viewing angles. While the registration 
algorithm used in this study was designed to manage noise and 
outliers, points with inconsistent information were more prone 
to be deemed as noise and subsequently discarded. These hurdles 
complicate the attainment of a complete point cloud under field 
conditions using the existing registration algorithm. While the 
Laplacian-based skeleton method exhibits some resilience to 
missing points and variable point density, it becomes less reliable 
when the original point cloud contains substantial missing points 
and noise. In such circumstances, the extracted skeleton may not 
accurately reflect the tree’s true structure and topology. Close-
proximity structures, already recognized as challenging for most 
point cloud processing algorithms [58], become even more prob-
lematic with complex branch intersections, exacerbating the limi-
tations of the Laplacian-based skeletonization and leading to 
confusion at intersecting points and unreliable skeleton extrac-
tion. Further more, the quality of the extracted skeleton impacts 
branch segmentation, leading to under- and oversegmentation 
due to gaps appearing at trunk–branch or branch–branch junc-
tions in the skeleton (see examples in Fig. 6). Missing points also 
present challenges in the CPC-based optimization for trunk and 
branch refinement. Although the RANSAC algorithm could 
potentially identify and exclude outliers in the refined trunk and 
branch skeletons, the quantitative estimation of trunk and branch 
diameter tends to be smaller than field measurements due to the 
incomplete surface of original point clouds. These limitations 
underscore the necessity of high raw data quality to yield top-tier 
results from geometry-based characterization methods.

Outliers observed in trunk diameter estimation were caused 
by three primary reasons (Fig. S9). First, the black cover removal 
operation in data preprocessing fundamentally eliminated a sig-
nificant portion of the trunk at the bottom, introducing potential 
measurement errors. The trunk segmentation method started 
from the lowest point of a point cloud, which was always assumed 
to be the trunk point. However, due to the cropping, low branches 
could grow at a similar height as the cropped trunk, and their 
side branches could even grow toward a lower height, yielding a 
false starting point for the trunk segmentation method. Tree 
height estimation was slightly affected by this false starting point 
since the height difference between the false starting point and 
the true trunk point typically will not be large, whereas trunk 
diameter estimation could be dramatically affected. This was 
because the points for ellipse fitting were provided from a branch 
rather than the trunk and resulted in a considerably smaller esti-
mation and thus a large error (Fig. S9A). Additionally, the trunk 
diameter measurement assumed that there was a constant dis-
tance buffer (i.e., 5 cm in this study) between the lowest trunk 
point and the lowest trunk–branch junction. When the distance 
was smaller than the constant buffer, the branch points would 
be clustered together with the trunk points, resulting in a much 

larger estimation (Fig. S9B). Second, the large number of missing 
trunk points essentially ruined the accuracy of the geometry-
based trunk diameter estimation method. Last, although field 
measurements were used as reference measurements, practical 
challenges introduced possible error sources for the comparison 
between the pipeline-derived values and manual measurements 
for traits like branch inclination angle.

Learning-based methods in the future
The developed geometry-based pipeline’s characterization accu-
racy sets a precedent for the characterization of tree morphology 
at the tree and branch levels using data collected under field 
conditions. Further enhancement could be achieved using 
advanced learning-based methods. Learning-based point cloud 
registration methods have displayed several advantages over 
traditional methods, including robustness, generalizability, effi-
ciency, and flexibility [63,64]. These techniques, through learn-
ing robust feature representations, manage to better handle 
noise, outliers, deformation, and data incompleteness. Moreover, 
such algorithms pave the way for integrating physical laws like 
tree stiffness models with data-driven methods to establish data-
driven, mechanistic models.

Learning-based point cloud completion methods aim to infer 
missing parts that scanned data, due to sensor limitations and 
object occlusions, fail to reconstruct [65–68]. They are promis-
ing, given their ability to manage the high-dimensional and 
irregular nature of point clouds effectively. In contrast, geometry-
based methods for point cloud completion, which rely on geo-
metric properties like smoothness, curvature, and symmetry, 
typically use interpolation based on known data like neighboring 
points and surface normal. These approaches can be computa-
tionally expensive and may fail to capture complex geometries. 
Furthermore, these methods would require a sparse point cloud 
with uniformly spaced points, a condition seldom met in real-
world applications.

Conversely, learning-based methods utilize deep neural net-
works to discern underlying patterns and structures in the data, 
allowing them to complete missing parts [65–68]. These net-
works are trained on large datasets, making them more robust 
to noise and able to generalize to varying scenarios and datasets. 
This adaptability is particularly valuable in real-world applica-
tions, where point clouds can differ in scale, complexity, and 
quality. Further, appearance and semantic information can be 
incorporated into neural networks, enhancing completion results 
and improving the accuracy and consistency of the completed 
point cloud, especially for objects with known shapes or struc-
tures, such as trees.

Conclusion
In this study, a geometry-based data processing pipeline was 
developed to use high-resolution TLS point cloud for the char-
acterization of trellised apple trees at both tree and branch levels. 
The developed pipeline accurately characterized tree-level 
architectural traits with consistent performance. Charac terizing 
branch-level architectural traits proved more challenging because 
of incomplete point representation, although the pipeline main-
tained a satisfactory performance. The study also identified data 
representation quality as the primary obstacle limiting the per-
formance of geometry-based analytical methods. Future research 
will concentrate on two key areas: (a) refining the current char-
acterization pipeline to enhance its adaptability, generalizability, 
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and efficiency, and (b) devising effective point cloud reconstruc-
tion and completion methods to provide new opportunities for 
improving characterization performance.
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