
ar
X

iv
:2

30
6.

16
76

3v
2 

 [
m

at
h.

O
C

] 
 2

1 
M

ar
 2

02
4

Sampling-Based Methods for Multi-Block Optimization

Problems over Transport Polytopes∗

Yukuan Hu† Mengyu Li‡ Xin Liu† Cheng Meng§

Abstract

This paper focuses on multi-block optimization problems over transport polytopes, which un-

derlie various applications including strongly correlated quantum physics and machine learning.

Conventional block coordinate descent-type methods for the general multi-block problems store

and operate on the matrix variables directly, resulting in formidable expenditure for large-scale

settings. On the other hand, optimal transport problems, as a special case, have attracted ex-

tensive attention and numerical techniques that waive the use of the full matrices have recently

emerged. However, it remains nontrivial to apply these techniques to the multi-block, possi-

bly nonconvex problems with theoretical guarantees. In this work, we leverage the benefits of

both sides and develop novel sampling-based block coordinate descent-type methods, which are

equipped with either entropy regularization or Kullback-Leibler divergence. Each iteration of

these methods solves subproblems restricted on the sampled degrees of freedom. Consequently,

they involve only sparse matrices, which amounts to considerable complexity reductions. We

explicitly characterize the sampling-induced errors and establish convergence and asymptotic

properties for the methods equipped with the entropy regularization. Numerical experiments on

typical strongly correlated electron systems corroborate their superior scalability over the meth-

ods utilizing full matrices. The advantage also enables the first visualization of approximate

optimal transport maps between electron positions in three-dimensional contexts.

1 Introduction

In this work, we consider multi-block optimization problems over transport polytopes as follows:

minimize (min) f(X1, . . . , XN ),
subject to (s.t.) Xi ∈ U(ai,bi), i = 1, . . . , N,

(1.1)

where, for any i ∈ {1, . . . , N} (1 ≤ N ∈ N), ai ∈ R
mi

+ , bi ∈ R
ni

+ ,

U(ai,bi) :=
{
T ∈ R

mi×ni

+ | T1ni
= ai, T

⊤1mi
= bi

}
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is called the transport polytope. The notation “1n” refers to the all-ones vector in R
n. The unknown

matrix variables are Xi ∈ R
mi×ni (i = 1, . . . , N). The objective function f :×N

i=1
R

mi×ni → R is

assumed to be block Lipschitz smooth over×N

i=1
U(ai,bi) (for the definition see section 4), possibly

nonconvex. Problem (1.1) finds its applications in several fields. For example, in quantum physics,
it provides a promising route for treating the elusive strongly correlated electron systems (e.g.,
transition metal oxides [29]), describing the electron-electron correlation explicitly [23, 42]. It can
also act as a subproblem in finding the Wasserstein barycenter among several discrete probability
distributions [21], which has gained popularity so far in statistics [13] and machine learning [28], as
well as in label distribution learning [84], which reflects the relative importance of different labels in
supervised learning [39].

For solving general multi-block optimization problems, block coordinate descent (bcd)-type
methods rank among the top choices. These methods fully exploit the separability of the feasi-
ble region, in that each subproblem involves only one variable block and is much easier to solve than
the original problem. Representatives of the bcd-type methods are the block coordinate descent
(bcd) methods [12,35,78], block conditional gradient (bcg) methods [9,16], proximal alternating lin-
earized minimization (palm) methods [14,43], as well as their stochastic versions [9,22,31,40,51,74],
where randomness is introduced to the gradient calculations or update order. Nevertheless, for the
specific problem (1.1), all the existing bcd-type methods store and operate on the matrix variables
directly, requiring at least quadratically growing complexities per iteration. This forms formidable
memory and computation burdens when {mi}Ni=1 and/or {ni}Ni=1 are of large magnitude. Taking
the aforementioned quantum physics application [42] for instance, mi (= ni) stands for the number
of grid points and can be of order 104 or 105 even for crude discretization.

When N equals one (mi = m, ni = n) and f is affine, problem (1.1) reduces to the Kantorovich
formulation of the classical optimal transport (OT) problem [75]. The exploration of this problem
dates back to Monge’s pioneering work in the 18th century [64], followed by Kantorovich’s relaxation
in the 20th century [45]. Since then, a plethora of numerical methods for solving OT problems have
been constantly emerging. Traditional ones solve differential equations [10, 19] or turn to linear
programming solvers [66, 68], resulting in unacceptable cubic complexities. Nowadays, the widest
usage may go to the entropy regularization-based methods [27, 67], which allow for the approxima-
tions of solutions in O(tmaxmn) scaling time with the Sinkhorn algorithm [73], where tmax is the
number of iterations; see section 2.3 for more discussions. In recent years, motivated by the need in
large-scale contexts, there have been works dedicated to alleviating the per-iteration quadratic costs
by the conventional Sinkhorn algorithm; for example, the low-rank approximation-based [7] and the
entrywise sampling-based [53] variants of the Sinkhorn algorithm. Remarkably, the latter variant
essentially deals with a restricted OT problem:

min
X

〈

Ĉ,X
〉

, s.t. X ∈ U(a,b), XIc = 0, (1.2)

where Ĉ ∈ R
m×n is an effective cost matrix (defined later), X ∈ R

m×n, a ∈ R
m, b ∈ R

n, I ⊆
{(j, k) | j = 1, . . . ,m, k = 1, . . . , n} contains the indices sampled from the beginning according
to some probability distribution related to a and b, and Ic denotes its complementary set. The
constraint “XIc = 0” enforces the entries in X indexed by Ic to be zero, which distinguishes the
algorithm from the well-known stochastic optimization methods. As a result, only |I| entries in X
get involved in the calculations and updates, leading to a nice scaling when |I| = o(mn). However, it
remains unclear whether the sampling technique can be adapted to handle the multi-block, possibly
nonconvex problem (1.1), while maintaining favorable convergence properties. One possible way is
to integrate the sampling technique into the bcd-type methods and to solve restricted subproblems
like (1.2) in each iteration. Analyzing the accumulation of errors induced by sampling will then
become subtle.
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1.1 Contributions and organization.

We develop in this paper sampling-based bcd-type methods for problem (1.1), which are equipped
with either entropy regularization or Kullback-Leibler divergence. In particular, importance sam-
plings are performed conforming to the probability distributions associated with the previous iterates
and each iteration solves subproblems restricted over sampled supports. Consequently, only o(mini)
entries in Xi (i = 1, . . . , N) take part in the updates and derivatives calculations, which amounts to
considerable computational saving in large-scale contexts.

Following the theoretical results about randomized matrix sparsification, we analyze the conver-
gence and asymptotic properties for the methods equipped with entropy regularization. We explicitly
characterize the sampling-induced errors and establish upper bounds for the average stationarity vi-
olations. The average violation is further shown to vanish in the limit

∑N
i=1(mi + ni) → +∞ (with

probability going to 1). Notably, to the best of our knowledge, our work is the first attempt in ap-
plying the matrix entrywise sampling technique to multi-block nonconvex settings with theoretical
guarantees.

We demonstrate the efficiency of the newly designed methods via numerical simulations of typical
strongly correlated electron systems. Their better scalability enables the first visualization of the
approximate OT maps between electron positions in three-dimensional contexts.

The paper is organized as follows. We provide preliminaries in section 2 and elaborate on the
algorithmic developments in section 3. Section 4 contains our theoretical results, whose proofs are
deferred to the appendix. Numerical experiments and results are described in section 5. Finally, we
conclude in section 6.

2 Preliminaries

This section offers some preliminaries, including notations, tools from OT, and bibliographical notes
on entrywise matrix sparsification.

2.1 Notations

This paper presents scalars, vectors, and matrices by regular-font, bold lower-case, and upper-case
letters, respectively. We denote the rounding down operation by “⌊·⌋”. The notation “1n” stands
for the all-ones vector in R

n. The notations “〈·, ·〉” and “‖ · ‖” calculate, respectively, the standard
inner product and norm of vectors or matrices in the ambient Euclidean space. We use “‖ · ‖2”
particularly for the 2-norm of matrices. The notation “κ(·)” refers to the spectral condition number
of a matrix. We use “Diag(·)” to form a diagonal matrix with the input vector. We denote the
entries or sub-blocks of vectors by single subscripts (e.g., ̺k or ai), the sub-blocks of matrices
by single subscripts (e.g., Xi), and the entries of matrices by double subscripts (e.g., xi,jk). A
matrix with a set subscript refers to the entries indexed by the set (e.g., XI). Sometimes, we
make abbreviations for the aggregation of the sub-blocks of a matrix (e.g., X≤i := (X1, . . . , Xi),
X>i := (Xi+1, . . . , XN )). These abbreviations become null if the index sets in the subscripts are
empty. The entrywise product and division of two vectors or matrices are denoted by “⊙” and
“⊘”, respectively. Univariate functions, such as “exp(·)” and “log(·)”, are extended to vectors and
matrices as entrywise operations.

For a multivariate function g, ∇g is the gradient of g at the points where g is differentiable. We
add a subscript to indicate the block with respect to which the derivative is taken (e.g., ∇ig).

We use R++ to denote the set of positive real numbers. Given a set, its measure or cardinality is
represented using “|·|”. We use “×” or “×” to refer to the Cartesian product of sets or spaces (e.g.,

×N

i=1
R

mi×ni or R
mi × R

ni), use exponents to represent the Cartesian product of identical sets or

spaces (e.g., (RK×K)Ne−1). The complementary set is noted with a superscript “c” (e.g., Ic).
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When describing algorithms, we use superscripts within brackets to refer to the iteration numbers

(e.g., X
(t)
i ).

2.2 Negative entropy and Kullback-Leibler divergence

Definition 1 ([49, 72]). For any T = (tij) ∈ R
m×n
+ , its negative entropy is defined as h(T ) :=

∑

ij tij(log tij − 1). Given any T = (tij), T
′ = (t′ij) ∈ R

m×n
+ , the Kullback-Leibler (KL) divergence

between T and T ′ is defined as

KL(T ;T ′) :=
∑

i,j

[
tij(log tij − log t′ij)− (tij − t′ij)

]
. (2.1)

If tij > 0 and t′ij = 0 for some pair (i, j), then KL(T ;T ′) = +∞.

The negative entropy has been adopted in thermodynamics as a measure of disorder in a system,
or a measure of uncertainty in information theory. The KL divergence can be treated as the Bregman
distance [18] associated with the negative entropy; it has been used as a measure of the disparity
between probability distributions [67].

2.3 Entropy regularized optimal transport

The Kantorovich formulation of the discrete OT problem is in general

min
T

〈W,T 〉 , s.t. T ∈ U(p,q), (2.2)

where T = (tij) ∈ R
m×n is the transport plan, W = (wij) ∈ R

m×n is the cost matrix, and p ∈ R
m,

q ∈ R
n are discrete probability distributions. The solution to problem (2.2) is referred to as the

OT plan, which achieves minimal transportation efforts. Nowadays, OT has attracted extensive
attention from applications (e.g., [8, 60, 63, 81]).

The computational complexity of directly solving problem (2.2) as a linear programming usually
grows cubically as m and n increase, which severely hinders the wide applications of OT. To approx-
imate the solution efficiently within certain tolerance, the author of [27] adds a (negative) entropy
regularization penalty, obtaining

min
T

〈W,T 〉+ λh(T ), s.t. T1n = p, T⊤1m = q, (2.3)

where λ > 0 is the regularization parameter. Note that the nonnegativity requirement is unnecessary
due to the definition of h.

On account of the entropy regularizer, problem (2.3) becomes strongly convex and thus admits
a unique optimal solution. Furthermore, as λ → 0, this optimal solution converges to an optimal
solution of problem (2.2) [67]. Computationally, the dual of problem (2.3) can be solved by an
alternating minimization scheme, known as the Sinkhorn algorithm in the OT community [73].
The alternating scheme involves only matrix-vector multiplications and entrywise divisions between
vectors (see section 3.1), particularly suited for GPU executions [27].

2.4 Entrywise matrix sparsification

Entrywise matrix sparsification is pioneered by Achlioptas and McSherry [2], later developed in
[17, 32, 50], where sampling-based algorithms are described to select a small number of entries from
an input matrix to construct a sparse sketch; the sketch is close to the original one in the oper-
ator norm with a high probability guarantee. The entries are sampled following some probability
distribution associated with the original matrix. Among others, importance sampling, as a statis-
tical technique, constructs the sampling probability distribution in the spirit of variance reduction
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Algorithm 1 The eralm method for solving problem (1.1).

Input: X
(0)
i ∈ R

mi×ni , ai ∈ R
mi , bi ∈ R

ni (i = 1, . . . , N), tmax ∈ N.
1: Set t := 0.
2: while certain conditions are not satisfied and t < tmax do

3: for i = 1, . . . , N do

4: Select a regularization parameter λ
(t)
i > 0 and a step size α

(t)
i ∈ (0, 1].

5: Compute C
(t)
i ∈ R

mi×ni as in the formula (3.2).

6: Solve subproblem (3.3) or (3.4) to obtain X̃
(t+1)
i ∈ R

mi×ni .

7: Update X
(t+1)
i := (1− α

(t)
i )X

(t)
i + α

(t)
i X̃

(t+1)
i ∈ R

mi×ni .
8: end for

9: Set t := t+ 1.
10: end while

Output: Approximate solution (X
(t)
1 , . . . , X

(t)
N ) ∈×N

i=1
R

mi×ni .

[34, 56, 57, 65]. Owing to the substantial computational complexity reduction thereby, entrywise
matrix sparsification has been adopted in various scenarios, e.g., for computing approximate eigen-
vectors [2], solving OT problems [53], and computing Gromov-Wasserstein distances [54].

3 Algorithmic developments

In this part, we develop two classes of methods for the multi-block problem over the transport
polytopes (1.1), with the bcg and palm methods as starting points. In particular, we add entropy
regularizers to the subproblems in the bcg method, while replacing the proximal term with the KL
divergence in the palm method. We further equip them with importance sampling-based entrywise
matrix sparsification.

3.1 Entropy regularized alternating linearized minimization

In each iteration, the bcg method obtains search directions via solving subproblems as

min
Xi

〈

C
(t)
i , Xi −X

(t)
i

〉

, s.t. Xi ∈ U(ai,bi), (3.1)

where
C

(t)
i := ∇if

(
X

(t+1)
<i , X

(t)
≥i

)
∈ R

mi×ni . (3.2)

Subproblem (3.1) can be identified as an OT problem with C
(t)
i being the cost matrix. As mentioned

in section 2.3, solving subproblem (3.1) entails cubic complexities using linear programming methods,
which forms an unacceptable computational burden. To this end, we add an entropy regularization
and instead resort to

min
Xi

〈

C
(t)
i , Xi −X

(t)
i

〉

+ λ
(t)
i h(Xi), s.t. Xi1ni

= ai, X
⊤
i 1mi

= bi (3.3)

in each iteration, where λ
(t)
i > 0 is the regularization parameter and h is the negative entropy in

Definition 1. Consequently, we obtain the entropy regularized alternating linearized minimization
(eralm) method; see Algorithm 1.

Observe that the number of variables in subproblem (3.3) scales quadratically, while the number
of equality constraints grows linearly. Therefore, it is more advantageous to work from the dual
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perspective, especially when mi and/or ni is of large magnitude. From [67], the dual of subproblem
(3.3) is

min
ũi,ṽi

qi(ũi, ṽi;λ
(t)
i ,Ψ

(t)
i ) := λ

(t)
i exp

(

ũi

λ
(t)
i

)⊤

Ψ
(t)
i exp

(

ṽi

λ
(t)
i

)

− ũ⊤
i ai − ṽ⊤

i bi, (3.4)

where ũi ∈ R
mi , ṽi ∈ R

ni are the dual variables associated with the equality constraints, and

Ψ
(t)
i := exp

(

−C(t)
i /λ

(t)
i

)

∈ R
mi×ni (3.5)

is called the kernel matrix. To tackle the block-structured problem (3.4), one natural choice is the
bcd method, which is also known as the Sinkhorn algorithm [73] in the context of OT. Starting from

a given ṽ
(t,0)
i ∈ R

ni , the Sinkhorn algorithm repeats the following two steps until fulfilling certain
criteria:

ũ
(t,s+1)
i : = λ

(t)
i log

(

ai ⊘
(

Ψ
(t)
i exp

(
ṽ
(t,s)
i /λ

(t)
i

)))

,

ṽ
(t,s+1)
i : = λ

(t)
i log

(

bi ⊘
(

Ψ
(t)⊤
i exp

(
ũ
(t,s+1)
i /λ

(t)
i

)))

,

where s indicates the subiteration number. After letting ǔ
(t,s)
i := exp

(
ũ
(t,s)
i /λ

(t)
i

)
∈ R

mi and

v̌
(t,s)
i := exp

(
ṽ
(t,s)
i /λ

(t)
i

)
∈ R

ni , the above schemes can be rewritten as

ǔ
(t,s+1)
i := ai ⊘

(

Ψ
(t)
i v̌

(t,s)
i

)

, v̌
(t,s+1)
i := bi ⊘

(

Ψ
(t)⊤
i ǔ

(t,s+1)
i

)

, (3.6)

involving matrix-vector multiplications and entrywise divisions between vectors, thus favoring high
parallel scalability [27]. The linear convergence rate of the Sinkhorn algorithm has been established
[59]. Further acceleration can be gained via warm starts [80].

3.2 Sampling-based variant of the eralm method

The eralm method still works on matrix variables and requires calculating C
(t)
i (3.5) explicitly.

Below, we use a sparse matrix Ψ̂
(t)
i ∈ R

mi×ni to approximate Ψ
(t)
i = (ψ

(t)
i,jk), rendering most of the

computational costs dispensable.
The idea of the sparse approximation largely originates from the following multiplicative expres-

sion for the unique optimal solution of subproblem (3.3):

X̃
(t+1,⋆)
i := Diag

(

exp

(

ũ
(t,⋆)
i

λ
(t)
i

))

Ψ
(t)
i Diag

(

exp

(

ṽ
(t,⋆)
i

λ
(t)
i

))

∈ R
mi×ni , (3.7)

where
(
ũ
(t,⋆)
i , ṽ

(t,⋆)
i

)
∈ R

mi × R
ni is an optimal solution of the dual (3.4). The expression (3.7)

indicates that x̃
(t+1,⋆)
i,jk = 0 whenever ψ

(t)
i,jk = 0. For another, it has been theoretically established in

[41] that the solutions of subproblem (3.1) can be sparse. When f is multi-affine, there even exist

sparse solutions with O(
∑N

i=1(mi + ni)) nonzero entries to problem (1.1) [42,44]. These two points

together motivate us to compute only a small portion of the entries in Ψ
(t)
i to eliminate most of the

storage and computation overhead.
For this purpose, it suffices to estimate the sparsity pattern along iterations. In this work, we

make an attempt through entrywise sampling [1,17,32,50,54]; that is, randomly pick a small portion
from {(j, k) : j = 1, . . . ,mi, k = 1, . . . , ni} according to certain sampling probability distribution.
Specifically, the entrywise sampling is implemented via Poisson sampling framework following the
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recent works [4, 17, 53], which independently evaluate each index for inclusion in the sampled set.
Compared to the sampling with replacement, the Poisson sampling has been shown to provide higher
accuracy in some scenarios and is more practical for distributed systems [77].

In light of the importance sampling (see section 2.4), the optimal sampling probabilities should

be p
(t,⋆)
i,jk ∝ x̃

(t+1,⋆)
i,jk [54]. However, X̃

(t+1,⋆)
i is completely unknown without the knowledge of ũ

(t,⋆)
i

and ṽ
(t,⋆)
i (see the formula (3.7)). An alternative is to sample conforming to the values in the

previous iteration, i.e., p
(t)′
i,jk ∝ x

(t)
i,jk . This becomes reasonable when the procedure gets close to the

optimum. In addition, to recover entries (j, k) from the optimal sparsity pattern that are missing in

X
(t)
i , in the sense that x

(t)
i,jk = 0, we linearly interpolate between p

(t)′
i,jk and the sampling probability

proposed by [54], i.e., p′′i,jk ∝
√
ai,jbi,k. Specifically,

p
(t)
i,jk := γp

(t)′
i,jk + (1− γ)p′′i,jk = γ

x
(t)
i,jk

∑

j′,k′ x
(t)
i,j′k′

+ (1− γ)

√
ai,jbi,k

∑

j′,k′

√
ai,j′bi,k′

(3.8)

for j = 1, . . . ,mi, k = 1, . . . , ni. Here, γ ∈ [0, 1] stands for the interpolation factor. Such a shrinkage
strategy is widely adopted in the subsampling literature [61, 83].

Given a sampling parameter ns,i ∈ N, the sparse approximation Ψ̂
(t)
i = (ψ̂

(t)
i,jk) ∈ R

mi×ni for the

kernel matrix Ψ
(t)
i is constructed in accordance with the Poisson sampling principle, i.e.,

ψ̂
(t)
i,jk :=

{

ψ
(t)
i,jk/p

(t)∗
i,jk, with probability p

(t)∗
i,jk := min

{

1, ns,i · p(t)i,jk

}

,

0, otherwise,
(3.9)

where the denominators ensure the unbiasedness of the random approximation (see Appendix B).

We denote the sampled set of indices as I(t)
i ⊆ {(j, k) : j = 1, . . . ,mi, k = 1, . . . , ni}. Note that

E(|I(t)
i |) =

∑

j,k p
(t)∗
i,jk ≤ ns,i

∑

j,k p
(t)
i,jk = ns,i, which indicates that ns,i is an upper bound for the

expected number of nonzero entries in Ψ̂
(t)
i . Although |I(t)

i | fluctuates, it still concentrates near its
expectation with high probability [4], ensuring that the computational cost remains manageable.

Replacing Ψ
(t)
i in subproblem (3.4) with Ψ̂

(t)
i , we obtain

min
ũi,ṽi

qi(ũi, ṽi;λ
(t)
i , Ψ̂

(t)
i ), (3.10)

which is the dual of1)

min
Xi

〈

Ĉ
(t)
i , Xi −X

(t)
i

〉

+ λ
(t)
i h(Xi),

s.t. Xi1ni
= ai, X

⊤
i 1mi

= bi, (Xi)(I(t)
i

)c
= 0.

(3.11)

Here, Ĉ
(t)
i = (ĉ

(t)
i,jk) ∈ R

mi×ni is the effective cost matrix, defined as

ĉ
(t)
i,jk :=

{

c
(t)
i,jk + λ

(t)
i log

(

p
(t)∗
i,jk

)

, if (j, k) ∈ I(t)
i ,

c
(t)
i,jk, otherwise.

(3.12)

Note that in Ĉ
(t)
i only the entries indexed by I(t)

i are required to form Ψ̂
(t)
i . To solve subproblem

(3.10) and (3.11), it suffices to substitute Ψ
(t)
i with Ψ̂

(t)
i in the Sinkhorn algorithm (3.6).

We call the eralm method equipped with sampling the S-eralm method, which is summarized
in Algorithm 2. The maximum expected numbers of sampled indices are controlled by {ns,i}Ni=1 ⊆ N.

1)The strong duality holds if subproblem (3.11) is feasible with I(t)
i

. The same will be true later, for subproblem
(3.20).
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Algorithm 2 The S-eralm method for solving problem (1.1).

Input: X
(0)
i ∈ R

mi×ni , ai ∈ R
mi , bi ∈ R

ni (i = 1, . . . , N), γ ∈ [0, 1], {ns,i}Ni=1 ⊆ N, tmax ∈ N.
1: Set t := 0.
2: while certain conditions are not satisfied and t < tmax do

3: for i = 1, . . . , N do

4: Select a regularization parameter λ
(t)
i > 0 and a step size α

(t)
i ∈ (0, 1].

5: Randomly pick a subset I(t)
i ⊆ {(j, k) : j = 1, . . . ,mi, k = 1, . . . , ni} following the Poisson

sampling with P
(t)
i = (p

(t)
i,jk) ∈ R

mi×ni

+ given by (3.8) and ns,i.

6: Construct Ψ̂
(t)
i = (ψ̂

(t)
i,jk) ∈ R

mi×ni as in the formula (3.9).

7: Solve subproblem (3.10) or (3.11) to obtain X̃
(t+1)
i ∈ R

mi×ni .

8: Update X
(t+1)
i := (1− α

(t)
i )X

(t)
i + α

(t)
i X̃

(t+1)
i ∈ R

mi×ni .
9: end for

10: Set t := t+ 1.
11: end while

Output: Approximate solution (X
(t)
1 , . . . , X

(t)
N ) ∈×N

i=1
R

mi×ni .

3.3 KL divergence-based alternating linearized minimization

We now turn to methods involving a direct penalization of the distance between Xi and X
(t)
i . In

each iteration, the palm method solves several proximal linearized subproblems of the form

min
Xi

〈

C
(t)
i , Xi −X

(t)
i

〉

+
µ
(t)
i

2
‖Xi −X

(t)
i ‖2, s.t. Xi ∈ U(ai,bi), (3.13)

where µ
(t)
i > 0 refers to the proximal parameter and C

(t)
i is defined in equation (3.2). Solving

subproblem (3.13) is equivalent to projecting X
(t)
i −C(t)

i /µ
(t)
i onto U(ai,bi). In this part, we replace

the proximal term ‖Xi−X(t)
i ‖2/2 by the KL divergence KL(Xi;X

(t)
i ), which is the Bregman distance

induced by the negative entropy (see section 2.2), and obtain

min
Xi

〈

C
(t)
i , Xi −X

(t)
i

〉

+ µ
(t)
i KL(Xi;X

(t)
i ), s.t. Xi1ni

= ai, X
⊤
i 1mi

= bi. (3.14)

This is motivated by the Bregman proximal point algorithms for convex optimization [80,82] and the
Bregman distance-based palmmethods for nonconvex optimization with relatively smooth objectives
[3, 55]. We describe the KL divergence-based alternating linearized minimization (klalm) method
in Algorithm 3.

As in the previous subsection, we write out the dual of subproblem (3.14):

min
ui,vi

qi(ui,vi;µ
(t)
i ,Φ

(t)
i ), (3.15)

where qi is defined in problem (3.4), ui ∈ R
mi , vi ∈ R

ni are the dual variables associated with the
equality constraints and the kernel matrix

Φ
(t)
i := exp

(

−C(t)
i /µ

(t)
i

)

⊙X
(t)
i ∈ R

mi×ni . (3.16)

The Sinkhorn algorithm (3.6) thus still applies, yet with Ψ
(t)
i changed to Φ

(t)
i .
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Algorithm 3 The klalm method for solving problem (1.1).

Input: X
(0)
i ∈ R

mi×ni , ai ∈ R
mi , bi ∈ R

ni (i = 1, . . . , N), tmax ∈ N.
1: Set t := 0.
2: while certain conditions are not satisfied and t < tmax do

3: for i = 1, . . . , N do

4: Select a proximal parameter µ
(t)
i > 0.

5: Compute C
(t)
i ∈ R

mi×ni as in the formula (3.2).

6: Solve subproblem (3.14) or (3.15) to obtain X
(t+1)
i ∈ R

mi×ni .
7: end for

8: Set t := t+ 1.
9: end while

Output: Approximate solution (X
(t)
1 , . . . , X

(t)
N ) ∈×N

i=1
R

mi×ni .

3.4 Sampling-based variant of the klalm method

Since subproblem (3.14) in the klalm method admits the following multiplicative expression for the
unique optimal solution:

X
(t+1,⋆)
i := Diag

(

exp

(

u
(t,⋆)
i

µ
(t)
i

))

Φ
(t)
i Diag

(

exp

(

v
(t,⋆)
i

µ
(t)
i

))

∈ R
mi×ni , (3.17)

where
(
u
(t,⋆)
i ,v

(t,⋆)
i

)
∈ R

mi ×R
ni is an optimal solution of the dual (3.15), we could likewise employ

sparse approximation on Φ
(t)
i for better scalability. We define the sparse approximation Φ̂

(t)
i =

(ϕ̂
(t)
i,jk) ∈ R

mi×ni for Φ
(t)
i = (ϕ

(t)
i,jk) as

ϕ̂
(t)
i,jk :=

{

ϕ
(t)
i,jk/p

(t)∗
i,jk, with probability p

(t)∗
i,jk,

0, otherwise,
(3.18)

where p
(t)∗
i,jk is given as in equation (3.9). Replacing Φ

(t)
i in subproblem (3.15) with Φ̂

(t)
i , we obtain

min
ui,vi

qi(ui,vi;µ
(t)
i , Φ̂

(t)
i ), (3.19)

which is the dual of

min
Xi

〈

Ĉ
(t)
i , Xi −X

(t)
i

〉

+ µ
(t)
i KL(Xi;X

(t)
i ),

s.t. Xi1ni
= ai, X

⊤
i 1mi

= bi, (Xi)(I(t)
i

)c
= 0.

(3.20)

The Sinkhorn algorithm (3.6) then applies with Ψ
(t)
i replaced by Φ̂

(t)
i .

While everything seems to go smoothly, we shall point out some distinctions: samplings over
iterations will not improve the supports to be optimized and can even result in infeasible subprob-

lems. Recalling the definition (3.16) of Φ
(t)
i , one knows from relation (3.17) that x

(t)
i,jk = 0 implies

x
(t+1,⋆)
i,jk = 0. If the subproblems are exactly solved and we perform samplings in two successive

iterations (say, t and t+1), the ith support to be optimized in the (t+1)th iteration is I(t−1)
i ∩I(t)

i ,

which is a subset of I(t−1)
i . In implementation, we adopt the Sinkhorn algorithm to inexactly solve

the subproblems. Its iterative schemes (3.6) also imply the inheritance of zero entries. In both cases,
samplings over iterations do not improve the supports to be optimized and can lead to infeasibility
due to repeated intersections. To this end, we choose to perform sampling only in some critical

iteration, say t̂ ∈ N. For t < t̂, the kernel matrices Φ
(t)
i are fully computed. With properly chosen

9



Algorithm 4 The S-klalm method for solving problem (1.1).

Input: X
(0)
i ∈ R

mi×ni , ai ∈ R
mi , bi ∈ R

ni (i = 1, . . . , N), γ ∈ [0, 1], {ns,i}Ni=1 ⊆ N, t̂, tmax ∈ N.
1: Set t := 0.
2: while certain conditions are not satisfied and t < tmax do

3: for i = 1, . . . , N do

4: Select a proximal parameter µ
(t)
i > 0.

5: if t = t̂ then
6: Randomly pick a subset I(t)

i ⊆ {(j, k) : j = 1, . . . ,mi, k = 1, . . . , ni} following the Poisson
sampling with P

(t)
i = (p

(t)
i,jk) ∈ R

mi×ni

+ given by (3.8) and ns,i.
7: end if

8: if t < t̂ then
9: Let Φ̂

(t)
i := Φ

(t)
i defined in the formula (3.16).

10: else

11: Construct Φ̂
(t)
i ∈ R

mi×ni as in the formula (3.18) with I(t̂)
i and P

(t̂)
i .

12: end if

13: Solve subproblem (3.19) or (3.20) to obtain X
(t+1)
i ∈ R

mi×ni .
14: end for

15: Set t := t+ 1.
16: end while

Output: Approximate solution (X
(t)
1 , . . . , X

(t)
N ) ∈×N

i=1
R

mi×ni .

t̂, we can expect X
(t̂)
i to capture well the sparsity pattern. Then, for t > t̂, the selected indices are

fixed and no sampling occurs.
We summarize the klalm method with sampling (the S-klalm method) in Algorithm 4.

3.5 Computational complexities

We compare the single-iteration computational complexities of the eralm, S-eralm, klalm, and
S-klalm methods. In particular, we focus on the cost of computing the (sparse) kernel matrices,
performing importance sampling, and the subiterations within the Sinkhorn algorithm (3.6). For
a summary, see Table 1, where smax ∈ N is the maximum subiteration number, and we assume
mi ≡ m ∈ N, ni ≡ n ∈ N, ns,i ≡ ns ∈ N (i = 1, . . . , N) for better readability.

Armed with warm starts, the Sinkhorn algorithm usually terminates after few subiterations.
As such, the S-klalm method enjoys the lowest complexity per iteration when t > t̂. Given
ns ∼ (m+n)1+τ with τ ∈ (0, 1), this advantage becomes more evident as τ tends to 0 or m+n goes
to +∞.

4 Convergence analysis

In this section, we present the convergence and asymptotic properties of both the eralm and S-

eralm methods. Since the KL divergence lacks local Lipschitz smoothness, the analysis for the
klalm and S-klalm methods can be highly nontrivial and is left over as future work. Nevertheless,
the theoretical results obtained for the eralm and S-eralm methods already deserve a whistle.
To the best of our knowledge, our work is the first attempt in incorporating randomized matrix
sparsification into numerical methods for multi-block nonconvex optimization, while establishing
the convergence and asymptotic properties.

All the results are obtained by assuming that the subproblems are exactly solved. Furthermore,
the subproblems of the S-eralm method are assumed to be feasible in their primal forms in all iter-
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Table 1: A comparison of computational complexities.

Ingredients
in one iteration

eralm klalm

Kernel matrices Nmn entries Nmn entries

Subiterations smax ×Nmn smax ×Nmn

Ingredients
in one iteration

S-eralm S-klalm

Sampling O(Nmn) O(Nmn) (t = t̂)

Kernel matrices Nns entries
Nmn entries (t < t̂)
Nns entries (t ≥ t̂)

Subiterations smax ×Nns
smax ×Nmn (t < t̂)
smax ×Nns (t ≥ t̂)

ations, so that the strong duality holds. Although at present no analysis is present on the conditions
under which the latter assumption is fulfilled, we remark that sampling parameters without careful
selection (say, ns,i = ⌊(mi+ni)

1.5⌋) already meets the demand in numerical simulations (see section
5).

To characterize the stationarity violation for problem (1.1), we define the residual functions: for

any X := (X1, . . . , XN) ∈×N

i=1
R

mi×ni and i = 1, . . . , N ,

Ri(X) := max
T∈U(ai,bi)

〈∇if(X), Xi − T 〉 . (4.1)

Moreover, let R :=
∑N

i=1 Ri. It is not hard to verify that R(X) ≥ 0 for any X ∈×N

i=1
U(ai,bi)

and that X ∈×N

i=1
U(ai,bi) is a Karush-Kuhn-Tucker point of problem (1.1) if and only if R(X) =

0 holds. For the iterate X(t) generated by the eralm or S-eralm method, R(X(t)) can thus
characterize the stationarity violation at X(t).

We assume Lipschitz smoothness of f over the feasible region, which holds automatically, e.g.,
for the quantum physics application (see section 5.1).

Assumption 1. The gradient of the function f is Lipschitz continuous over×N

i=1
U(ai,bi), i.e.,

there exists an L ≥ 0 such that, for i = 1, . . . , N ,

‖∇if(X)−∇if(X
′)‖ ≤ L‖X −X ′‖ for all X,X ′ ∈

N×
i=1

U(ai,bi).

We first give the convergence and asymptotic properties of the eralm method. The proofs of
the theorem and corollary below can be found in Appendix A.

Theorem 1. Suppose that Assumption 1 holds. Let {X(t)} be the iterate sequence generated by the
eralm method when

tmax ≥
f(X(0))− f

2d̄2LN(2
√
N + 1)

, α
(t)
1 = · · · = α

(t)
N ≡ α :=

1

d̄

√

f(X(0))− f

2LN(2
√
N + 1)tmax

, (4.2)

and λ
(t)
1 = · · · = λ

(t)
N ≡ λ for 0 ≤ t ≤ tmax and subproblems (3.3) are exactly solved, where f ∈ R is

less than or equal to the optimal value of problem (1.1),

di := min {√mi ‖ai‖∞ ,
√
ni ‖bi‖∞} (i = 1, . . . , N), d̄ :=

N
max
i=1

di.
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Then

0 ≤ 1

tmax

tmax−1∑

t=0

R(X(t)) ≤ 2d̄(2N + 1)

√

L(f(X(0))− f)

tmax
+Nλh̄, (4.3)

where h̄ := −minNi=1 h(aib
⊤
i ).

Remark 1. In Theorem 1, as well as the subsequent Corollary 1, Theorem 2 and Corollary 2, the

requirements α
(t)
1 = · · · = α

(t)
N and λ

(t)
1 = · · · = λ

(t)
N are assumed for better readability. The theorems

and corollaries can be extended without too much difficulty to the case where α
(t)
i and λ

(t)
i vary across

i ∈ {1, . . . , N} and 0 ≤ t ≤ tmax.

The errors related to the entropy terms are inevitable because the objective function in the
subproblem of the eralm method is not a local approximation for f . Nevertheless, the right-hand
side of inequality (4.3) vanishes in the limit

∑N
i=1(mi + ni) → +∞ after choosing proper tmax and

λ and imposing Assumption 2 below. This is of particular importance for large-scale applications.

Assumption 2. (i) There exists an f ∈ R such that the optimal value of problem (1.1) is lower

bounded by f for any {mi}Ni=1, {ni}Ni=1 ⊆ N.

(ii) There exists a q > 0 such that, for any {mi}Ni=1, {ni}Ni=1 ⊆ N, a⊤i 1mi
= b⊤

i 1ni
= 1,

maxj ai,j ≤ q ·minj ai,j, and maxk bi,k ≤ q ·mink bi,k.

(iii) There exists a θ ≥ 0 such that, for any {mi}Ni=1, {ni}Ni=1 ⊆ N, the block Lipschitz constant

L = O(
∑N

i=1(mi + ni)
θ).

(iv) There exists a ξ ≥ 0 such that maxNi=1(mi + ni)/minNi=1(mi + ni) ≤ ξ for any {mi}Ni=1,
{ni}Ni=1 ⊆ N.

Remark 2. Items (i) and (ii) in Assumption 2 are motivated by the application of interest, where
a continuous problem arises and one seeks to solve its discretized version. For example, in the
application of strongly correlated quantum physics (see section 5.1 and also [23, 42]), the discretized
problem has a natural objective lower bound f = 0 due to the nonnegativity of energy, ai and bi

are discretization of the so-called single-particle density, whose integral is a prescribed constant.
Incidentally, up to normalizing f , we assume the total mass of marginals to be 1 in item (ii). For
simplicity in theoretical analysis, we adopt items (iii) and (iv), which can be further relaxed to some
extent.

Corollary 1. Suppose that Assumptions 1 and 2 (i)-(iii) hold. Let {X(t)} be the iterate sequence
generated by the eralm method when

tmax ≥ max

{

Ω

(
N∑

i=1

(mi + ni)
η

)

,
f(X(0))− f

2d̄2LN(2
√
N + 1)

}

, f(X(0)) ≤M,

α
(t)
1 = · · · = α

(t)
N ≡ α, λ

(t)
1 = · · · = λ

(t)
N ≡ λ = o

(

1
∑N

i=1 logmini

)

for 0 ≤ t ≤ tmax and subproblems (3.3) are exactly solved, where η(> θ) and M are constants inde-

pendent from {mi}Ni=1 and {ni}Ni=1 and α is defined in equation (4.2). Then
∑tmax−1

t=0 R(X(t))/tmax →
0 as

∑N
i=1(mi + ni) → +∞.

With sampling, the analysis for the S-eralmmethod is much more involved, in that the entrywise
matrix sparsification results in additional errors. We establish the convergence and asymptotic
results with the help of the theory of randomized matrix sparsification as well as the following
Assumption 3; details are provided in Appendix B.
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Assumption 3. (i) There exist constants ν ∈ (1/2, 1], c1, c2, ĉ2 > 0 such that, for any 0 ≤ t ≤
tmax and i = 1, . . . , N ,

‖Ψ(t)
i ‖2 ≥ (mi + ni)

ν

c1
, κ(Ψ

(t)
i ) ≤ c2, κ(Ψ̂

(t)
i ) ≤ ĉ2.

(ii) The interpolation factor γ is less than 1 and there exists an ε > 0 such that, for i = 1, . . . , N ,

1

maxj,k,t p
(t)
i,jk

≥ ns,i ≥
8(mi + ni)

1−2ν log4(mi + ni)

(1− γ)wi log
4(1 + ε)

,

where wi := minj,k
√
ai,jbi,k/

∑

j′,k′

√
ai,j′bi,k′ .

Remark 3. Assumption 3 is adopted for simplicity in theoretical analysis. In particular, since
wi ≤ 1/mini, item (ii) implies the following lower bound for ns,i:

8(mi + ni)
1−2ν log4(mi + ni)

(1− γ)wi log
4(1 + ε)

≥ 8

(1− γ) log4(1 + ε)

mini

(mi + ni)2ν−1
log4(mi + ni),

which is of lower order than mini because ν ∈ (1/2, 1]. The condition ns,ip
(t)
i,jk ≤ 1 is a convention

prevalent in the literature of Poisson sampling [76,77]. Note that under Assumption 2 (ii), the entries

in ai or bi are of the same order. Therefore, wi = Θ(1/mini) and p
(t)
i,jk = Θ(1/mini) after choosing

a proper value for γ. Item (ii) then holds if we choose ns,i = Θ(mini log
4(mi + ni)/(mi + ni)

2ν−1)
and the values of ε and γ are independent from {mi}Ni=1 and {ni}Ni=1.

Theorem 2. Suppose that Assumption 1 holds. Let {X(t)} be the iterate sequence generated by the
S-eralm method when

tmax ≥
f(X(0))− f

2d̄2LN(2
√
N + 1)

,

α
(t)
1 = · · · = α

(t)
N ≡ α, and λ

(t)
1 = · · · = λ

(t)
N ≡ λ̂ for 0 ≤ t ≤ tmax, subproblems (3.11) are feasible and

exactly solved, and Assumption 3 is fulfilled, where f ∈ R is less than or equal to the optimal value

of problem (1.1) and α is defined in equation (4.2). Then, for any mi + ni > max{152, e
√
c3} (i =

1, . . . , N), ζ > 0, and ι > 0, with probability no less than

N∏

i=1

{[

1− 2 exp

(

−16ζ2

ε4
log4(mi + ni)

)]
[
1− exp

(
−2ι2mini

)]
}tmax

,

there holds

0 ≤ 1

tmax

tmax−1∑

t=0

R(X(t)) ≤ 2d̄(2N + 1)

√

L(f(X(0))− f)

tmax
+ 2Nλ̂h̄ (4.4)

+ λ̂d̄

N∑

i=1

√
ns,i + ι ·mini log

1

(1− γ)wins,i
+ λ̂

N∑

i=1

ĉ2c3

log2(mi + ni)− c3
,

where c3 := c1(1 + ε+ ζ) log2(1 + ε).

Corollary 2. Suppose that Assumptions 1 and 2 hold. Let {X(t)} be the iterate sequence generated
by the S-eralm method when

tmax = Θ

(
N∑

i=1

(mi + ni)
η

)

satisfying tmax ≥
f(X(0))− f

2d̄2LN(2
√
N + 1)

, f(X(0)) ≤M,

13



α
(t)
1 = · · · = α

(t)
N ≡ α, ns,i = Θ

(
mini

(mi + ni)2ν−1
log4(mi + ni)

)

,

λ
(t)
1 = · · · = λ

(t)
N ≡ λ̂ = o

(

1
∑N

i=1

√
mini log(mi + ni)

)

for 0 ≤ t ≤ tmax, subproblems (3.11) are feasible and exactly solved, and Assumption 3 is fulfilled,
where c1, c2, ĉ2, ε, η(> θ), γ, ν, ξ, and M are independent from {mi}Ni=1 and {ni}Ni=1 and α is

defined in equation (4.2). Then
∑tmax−1

t=0 R(X(t))/tmax → 0 as
∑N

i=1(mi+ni) → +∞ with probability
going to 1.

5 Numerical experiments

We demonstrate the efficiency of the proposed methods via numerical results on model one/two/three-
dimensional strongly correlated electron systems. We first describe the related optimization prob-
lem of the form (1.1) mathematically and provide experimental details, including systems to be
simulated and default algorithmic settings. Then numerical comparisons are conducted among the
palm method [14, 43] and the newly designed four methods on the one-dimensional systems. We
integrate those with favorable performances into a cascadic multigrid optimization framework for
the simulations of two/three-dimensional systems. A first visualization of approximate OT maps
between electron positions in three-dimensional contexts is provided. Finally, we test the scalability
of methods with respect to the problem size as well as the number of variable blocks.

5.1 Problem description

From the strong-interaction limit of density functional theory [37], the strongly correlated quantum
systems in the strictly correlated regime can be well understood by solving the multimarginal optimal
transport problems with Coulomb cost (MMOT) [5, 6, 11, 20, 23, 26, 38, 47, 48,62]:

min
π

∫

(Rd)Ne

cee(r1, . . . , rNe
) dπ(r1, . . . , rN ),

s.t.

∫

(Rd)Ne−1

dπ(r1, . . . , ri−1, ·, ri+1, . . . , rNe
) =

ρ

Ne
, i = 1, . . . , Ne.

(5.1)

Here, d ∈ {1, 2, 3} is the system dimension, Ne ∈ N is the number of electrons, ri ∈ R
d refers to

the position of the ith electron (i = 1, . . . , Ne), ρ : Rd → R+ is the single-particle density, satisfying
∫
ρ = Ne, cee(r1, . . . , rNe

) :=
∑

1≤i<j 1/ ‖ri − rj‖ stands for the N -particle Coulomb potential, and
π is a joint probability measure of Ne electron positions.

Since the dimension of the search space in the MMOT (5.1) scales exponentially with the number
of electrons, one could adopt a Monge-like ansatz [23, 42], which characterizes the electron-electron
couplings explicitly, to transform the MMOT into the following problem:

min
{γi}Ne

i=2

Ne∑

i=2

∫

(Rd)2

ρ(r)γi(r, r
′)

‖r− r′‖ drdr′ +
∑

2≤i<j

∫

(Rd)3

ρ(r)γi(r, r
′)γj(r, r′′)

‖r′ − r′′‖ drdr′ dr′′, (5.2)

s.t.

∫

Rd

γi(·, ri) dri = 1,

∫

Rd

γi(r1, ·)ρ(r1) dr1 = ρ, γi ≥ 0, i = 2, . . . , Ne.

Here, γi : R
d × R

d → R+ encodes the coupling between the first and ith electrons, ργi can be
understood as the joint probability density between their positions (i = 2, . . . , Ne).

To numerically solve problem (5.2), we confine the integral domain to some bounded Ω ⊆ R
d

and adopt finite elements-like discretization. In particular, we first define a mesh T = {ek}Kk=1 to
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divide Ω into K non-overlapping elements, i.e., ∪K
k=1ek = Ω and ek ∩ ek′ = ∅ whenever k 6= k′.

Then we use a finite summation of Dirac measures to approximate ρ as ρ ≈ ∑K
k=1 ̺kδdk

, where
̺k :=

∫

ek
ρ, dk ∈ R

d is the barycenter of the element ek (k = 1, . . . ,K). Let ̺ := [̺1, . . . , ̺K ] ∈ R
K
++

and Λ := Diag(̺) ∈ R
K×K . The two-particle Coulomb potential and couplings are respectively

discretized into K × K matrices C = (ckl) ∈ R
K×K and Xi = (xi,kl)kl ∈ R

K×K (i = 2, . . . , Ne),
where, for i = 2, . . . , Ne and k, l = 1, . . . ,K,

ckl :=

{

‖dk − dl‖−1 , if k 6= l,
0, otherwise,

xi,kl :=
1

|ek|

∫

ek

∫

el

γi(r, r
′) dr′ dr.

Note that the diagonal entries in C are set to 0 to avoid numerical instability. We impose the
following extra constraints on {Xi}Ne

i=2 to maintain the model equivalence:

Tr(Xi) = 0, i = 2, . . . , Ne; 〈Xi, Xj〉 = 0, i, j = 2, . . . , Ne : i 6= j. (5.3)

Intuitively, the constraints (5.3) exclude the cases where two electrons collide. After penalizing the
constraints (5.3) in ℓ1 form and transforming Xi to Yi := ΛXi ∈ R

K×K (i = 2, . . . , Ne), we obtain a
multi-block optimization problem over the transport polytopes of the form (1.1) (with N = Ne− 1):

min
{Yi}Ne

i=2

Ne∑

i=2

〈
Yi, C + βΛ−1

〉
+
∑

2≤i<j

〈
Yi,Λ

−1YjC + βΛ−2Yj
〉
,

s.t. Yi ∈ U(̺,̺) ⊆ R
K×K , i = 2, . . . , Ne.

(5.4)

The matrix variable Yi can be understood as the transport plan between the positions of the first
and ith electrons (i = 2, . . . , Ne). It has been shown in [44] that there exists a β̂ ≥ 0 such that the

optimal solutions of (5.4) satisfy the constraints (5.3) whenever β ≥ β̂.

5.2 Systems under simulations

We consider eight one/two/three-dimensional (1D/2D/3D) systems. Table 2 contains their single-
particle densities, domains of interest, and numbers of electrons. The component function ρα(·; c)
(α > 0, c ∈ R

d) is defined as

ρα(r; c) := exp
(

−α ‖r− c‖2
)

, ∀ r ∈ R
d.

We illustrate the single-particle densities in Figure 1.

Remark 4. Nearly all the single-particle densities in Table 2 comprise of Gaussian functions. These
settings are reasonable because electrons tend to concentrate around the nuclei, which are represented
by the potential wells. For example, the single-particle density of system 8 comprises of two Gaussian
functions with weights 1 and 3, respectively. It can describe a dissociating lithium hydride [36], which
has two nuclei with charge numbers 1 and 3, respectively. We shall note that the applicability of the
proposed methods is independent from the constructions of the single-particle densities.

5.3 Default settings

We employ either equimass or equisize discretization (to be fixed later) for problem (5.4). We set
β = 1 for any K following [42], which is reasonable because the nonzero entries in both C and
Λ−1 are of order K. For both the eralm and S-eralm methods, we adopt decreasing step sizes

α
(t)
i = 1/(t+ 1)0.75, i = 2, . . . , Ne, to pursue convergence. In the S-eralm and S-klalm methods,

we let ns,i = ⌊K1.5⌋ (i = 2, . . . , Ne). All the proposed methods set the regularization or proximal
parameters adaptively as

λ
(t)
i = σ‖ṽ(t)

i ‖∞/(20 log(K)), µ
(t)
i = σ‖v(t)

i ‖∞/(20 log(K)), i = 2, . . . , Ne, (5.5)
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Table 2: 1D/2D/3D systems used for simulations. The second column lists the unnormalized single-
particle densities ρ, the third gives the domains Ω, and the last indicates the numbers of electrons
Ne in systems.

System No. ρ Ω Ne

1D systems

1 cos(πr) + 1 [−1, 1] 3

2 2ρ6(r;−0.5) + 1.5ρ4(r; 0.5) [−1.5, 1.5] 3

3 ρ1/
√
π(r) [−2, 2] 7

4
ρ4(r;−2) + ρ4(r;−1.5) + ρ4(r;−1) + ρ4(r;−0.5)
+ρ4(r; 2/3) + ρ4(r; 4/3) + ρ4(r; 2)

[−3, 3] 7

2D systems

5 ρ3(r; [0, 0.96]
⊤) + ρ3(r; [1.032,−0.84]⊤) + ρ3(r; [−1.032,−0.84]⊤) [−3, 3]2 3

6 2ρ3(r; [0, 1.2]
⊤) + ρ3(r; [1.29,−1.05]⊤) + ρ3(r; [−1.29,−1.05]⊤) [−3, 3]2 4

3D systems

7 ρ3(r; [−1,−1,−1]⊤) + ρ3(r; [1, 1,−1]⊤) + ρ3(r; [−1, 1, 1]⊤) [−2, 2]3 3

8 3ρ4(r; [−1, 0, 0]⊤) + ρ4(r; [1, 0, 0]
⊤) [−2, 2]× [−1, 1]2 4

Figure 1: The illustrations of the single-particle densities listed in Table 2. For the 3D systems, we
only show the regions where the values of the single-particle densities are larger than 0.01.

where σ = 1. The selections of γ and t̂ will be presented in section 5.4. We shall point out
that better performances of the proposed methods can be expected with more careful parameter
tuning. All the subproblems are solved using the Sinkhorn algorithm (3.6), with warm starts for
acceleration. Incidentally, to circumvent possible underflow and achieve better convergence rates
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[33] when using the Sinkhorn algorithm, we discard the entries in ̺ that are smaller than 0.1%
of ‖̺‖∞; this is also practically reasonable, in that the regions of low probabilities are far less
important. With the abuse of notations, we still denote the truncated vector by ̺ so that other
symbols remain unchanged. Regarding the stopping criteria, we terminate the Sinkhorn algorithm

whenever the feasibility violation ‖Y (t+1)
i 1K − ̺‖∞ is less than 10−6 or the subiteration number

arrives at smax = 20 (i = 2, . . . , Ne). We stop the outer loop if

∆(t) :=
1

Ne − 1

Ne∑

i=2

∥
∥
∥Λ−1

(
Y

(t)
i − Y

(t−1)
i

)
∥
∥
∥

falls below a prescribed tol > 0 or the iteration number reaches a prescribed tmax ∈ N. The specific
values of tol and tmax are detailed in the subsequent subsections. All the experiments presented are
run in a platform with Intel(R) Xeon(R) Gold 6242R CPU @ 3.10GHz and 510GB RAM running
Matlab R2019b under Ubuntu 20.04.

For quantities of interest, we monitor the converged objective value (obj) and approximate the
so-called strictly-correlated-electrons (SCE) potential [23,30,42] with the output dual variables. The
SCE potential is the functional derivative of the optimal value of the MMOT with respect to ρ and
is important for electronic structure calculations [23]. Taking the eralm method for example, we
approximate the SCE potential by v := ṽ −minKk=1{ṽk} · 1K ∈ R

K , where

ṽ :=
1

Ne − 1

Ne∑

i=2

ṽi ∈ R
K ,

and {ṽi}Ne

i=2 are the dual solutions yielded by the Sinkhorn algorithm. In addition, for the cases
where explicit constructions of the optimal solutions to problem (5.4) and the SCE potentials of
the MMOT are available (e.g., in one-dimensional settings [25,44]), we also evaluate the qualities of
the converged solutions via the relative errors of the objective values (err obj) and SCE potentials
(err sce). They are defined respectively as

err obj :=

∣
∣
∣
∣

obj− obj⋆

obj⋆

∣
∣
∣
∣
, err sce :=

‖v − v⋆‖∞
‖v⋆‖∞

.

Here, obj⋆ ∈ R denotes the optimal objective value of problem (5.4) and v⋆ ∈ R
K refers to the

vector made up by the values of the SCE potential at barycenters. For the efficiency comparison,
we record the CPU time in seconds (T).

5.4 Algorithm comparisons

We conduct comparisons among the palm method [14, 43] and the proposed four methods on the
1D systems in Table 2. In particular, we first test the S-eralm methods with different sampling
probabilities and the S-klalm methods with different choices of t̂. As a byproduct, we select
default values of γ and t̂. Secondly, we compare the proposed four methods. Those with favorable
performances are tested against the palm method in the third part and used for the simulations of
2D and 3D systems in section 5.6.

5.4.1 Comparisons among the S-eralm methods with different sampling probabilities

We consider randomly generated sampling probabilities and importance sampling-based probabilities
(3.8) (γ ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 0.99, 0.999}) on system 1 with K = 90 (equimass discretization). For
each setting of sampling probability, 10 random trials are generated by the built-in function “rand”
in Matlab. The stopping parameters are tol = 5× 10−3 and tmax = +∞. We record the achieved
err obj, err sce, and required T averaged over 10 trials for each setting in Table 3.
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Table 3: The achieved err obj, err sce, and required T averaged over 10 trials given by the S-

eralm methods with different sampling probabilities on system 1 with K = 90 (equimass dis-
cretization).

Sampling Prob. err obj err sce T

Random 0.4184 0.86 128.84
γ = 0.1 0.3098 0.69 120.16
γ = 0.3 0.1729 0.54 93.30
γ = 0.5 0.1044 0.42 65.10
γ = 0.7 0.0693 0.39 48.13
γ = 0.9 0.0597 0.37 35.05
γ = 0.99 0.0525 0.36 21.76
γ = 0.999 0.1118 0.34 5.66
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Figure 2: The achieved err obj, err sce, and required T averaged over 10 trials for each pair of (K, t̂)
given by the S-klalm method with different values of t̂ on system 1 (equimass discretization). The
blue, green, and purple dashed lines with right-pointing triangle markers are the results of the S-

klalm method with t̂ = 0, 5, 10, respectively. Left: err obj. Middle: err sce. Right: T.

Though lacking theoretical justifications, the sampling probabilities incorporating information
of previous iterates are found to yield lower errors within less CPU time than randomly generated
ones. Increasing the value of γ contributes to less CPU time for fulfilling the stopping criterion, yet
worsening the accuracy once surpassing some threshold. We select γ = 0.99 in the S-eralm and
S-klalm methods for a compromise between accuracy and efficiency in the subsequent experiments.

5.4.2 Comparisons among the S-klalm methods with different t̂

We conduct numerical comparisons on system 1 in Table 2 with equimass discretization and K ∈
{90, 180, 360, 720}. We call the S-klalm method with t̂ ∈ {0, 5, 10}. For each pair of (K, t̂),

10 random trials are performed. The stopping parameters are tol = 10−3 ×
√
2
log2(K/90)2) and

tmax = +∞. We depict the achieved err obj, err sce, and required T averaged over 10 trials for each
pair of (K, t̂) in Figure 2.

From Figure 2, we observe that the S-klalm method with a positive t̂ does yield higher-quality
solutions within comparable CPU time. But the advantage becomes less obvious as K grows large.
Since large-scale problems are common in the applications of interest and a positive t̂ indicates

2)We increase tol since the size of U(̺,̺) decreases as O(1/
√
K); see Lemma 2.
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Figure 3: The achieved err obj, err sce, and required T averaged over 10 trials for each value of σ
given by the eralm, klalm, S-eralm, and S-klalm methods on system 1 with K = 90 (equimass
discretization). The red solid and dashed lines with triangle markers represent the results of the
eralm and S-eralm methods, respectively. The blue solid and dashed lines with right-pointing
triangle markers represent the results of the klalm and S-klalm methods, respectively. Left:
err obj. Middle: err sce. Right: T.

the computations and storage of full matrices during the first iterations, we choose t̂ = 0 in the
S-klalm method for the ensuing numerical experiments.

5.4.3 Comparisons among the S-eralm and S-klalm methods

We first test the proposed four methods with σ taking its value in {20, 22, 24, 26, 28} on system 1
with K = 90 and equimass discretization. For each value of σ, 10 random trials are performed. The
stopping parameters are tol = 5×10−3/

√
σ and tmax = +∞. We record the achieved err obj, err sce

and required T averaged over 10 random trials for each value of σ in Figure 3.
From Figure 3, we observe that (i) the objective errors of the eralm and S-eralm methods rise

quickly as σ increases, which conforms to the theoretical results in section 4; (ii) the klalm and
S-klalm methods yield high-quality solutions regardless of the choices of σ, demonstrating their
robustness to the choices of proximal parameters. The robustness is practically desirable because
a tiny σ, as is needed by the (S-)eralm methods to achieve high accuracy, can result in numerical
underflow.

In the above settings, we also notice that the S-eralm method arrives at better solutions than
those given by the S-klalmmethod when a small σ is used. But we shall point out that the advantage
no longer persists as K increases. We test the S-eralm and S-klalm methods with σ = 1 on system
1 with K ∈ {90, 180, 360, 720} (equimass discretization). For each value of K, 10 random trials are

performed. The stopping parameters are tol = 10−3 ×
√
2
log2(K/90)

and tmax = +∞. We depict
the achieved err obj, err sce, and required T averaged over 10 random trials for each value of K in
Figure 4.

From Figure 4, we conclude that the advantage of the S-eralmmethod over the S-klalmmethod
in terms of accuracy disappears as the problem size increases, along with fast growing computational
time. This is in line with Table 1, i.e., the matrix entrywise sampling consumes quadratic complexity
in each iteration of the S-eralm method.

Finally, we compare the klalm and S-klalm methods. Aiming at a problem restricted on the
sampled support, it is impractical for the S-klalm method to outperform the klalm method in
accuracy. However, if the computational budget is limited, the S-klalm method can yield relatively
high-quality solutions within much less CPU time, particularly when the problem size goes large. We
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Figure 4: The achieved err obj, err sce, and required T averaged over 10 trials for each value of
K given by the S-eralm and S-klalm methods with σ = 1 on system 1 (equimass discretization).
The red dashed lines with triangle markers represent the results of the S-eralm method. The blue
dashed lines with right-pointing triangle markers represent the results of the S-klalm method. Left:
err obj. Middle: err sce. Right: T.

demonstrate this point by numerical comparisons on system 1. We employ equimass discretization
with K ∈ {90, 180, 360, 720, 1440, 2880}. We call the klalm and S-klalm methods for each value of

K with 10 random trials. The stopping parameters are tol = 10−3 ×
√
2
log2(K/90)

and tmax = +∞.
We depict the convergence curves of err obj along with the CPU time averaged over 10 trials for
each value of K in Figure 5. The notation Tinter refers to the CPU time where the curves of two
methods intersect for the last time.

From Figure 5, we observe that the klalmmethod attains worse accuracy than the S-klalmmethod
until the CPU time touches Tinter. Moreover, as we increase the value of K, Tinter grows at a cubic
rate; see Figure 6 for an illustration of cubic polynomial fitting. These results imply that (i) if the
problem size is small (e.g., of order 102), the klalmmethod achieves high accuracy within acceptable
CPU time; (ii) if the problem size is relatively large (e.g., of order 103 or higher), as is usually the
case in the applications of interest, and the computational budget is limited, the S-klalm method
is more preferable from the practical perspective.

Based on the above numerical findings, we choose the klalm and S-klalm methods for the
comparisons with the palm method as well as the simulations of the 2D and 3D systems in section
5.6.

5.4.4 Comparisons among the palm, klalm, and S-klalm methods

We perform numerical comparisons on the 1D systems in Table 2 with equimass discretization.
The implementation of the palm method follows [42], except that we tune the proximal param-
eters adaptively as in equation (5.5) for fair comparisons. For systems 1 and 2, we consider
K ∈ {90, 180, 360, 720}. For each value of K, 10 random trials are performed. The stopping

parameters are tol = 10−3 ×
√
2
log2(K/90)

and tmax = +∞. For systems 3 and 4, we consider
K ∈ {140, 280, 560, 1120}. For each value of K, 10 random trials are performed. The stopping pa-

rameters are tol = 10−3×
√
2
log2(K/140)

and tmax = +∞. The achieved err obj, err sce, and required
T averaged over 10 random trials given by the three methods are gathered in Figures 7 and 8.

Under the same settings of proximal and stopping parameters, the palm method suffers from
premature convergence, while the klalm method yields much smaller objective errors across the
1D systems. The multiplicative expression (3.17) further enables the use of randomized matrix
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Figure 5: The convergence curves of err obj along with the CPU time averaged over 10 trials for each
value of K given by the klalm and S-klalm methods on system 1 (equimass discretization). The
blue solid and dashed lines stand for the results of the klalm and S-klalm methods, respectively.
The notation Tinter refers to the CPU time where the curves of two methods intersect for the last
time.

sparsification, leading to the S-klalm method with better scalability.

5.5 A cascadic multigrid optimization framework

Before the simulations of 2D and 3D systems, we introduce a cascadic multigrid (cmg) optimization
framework for problem (5.4). The cmg optimization framework has demonstrated its power in
accelerating the numerical solution of large-scale scientific problems, especially those with governing
partial differential equations; see, e.g., [15,24,58,79]. In general, the framework begins with a coarse
mesh, with which a small-scale problem is associated. An accurate solver is then called to solve the
small-scale problem and yields a solution. Later, it basically repeats the following three steps: (i)
refine the previous coarse mesh to a finer one; (ii) prolongate the previous solution and construct
an initial point over the current mesh; (iii) start a local solver from the initial point and obtain
a solution over the current mesh. With carefully designed prolongation operator and local solver,
the framework can fully utilize the solution information in the coarser meshes and considerably
accelerate the numerical solution of the large-scale problems over the finer meshes.

In our context, we call accurate solvers, such as the klalm method, to tackle the problems over
the initial coarse meshes. After uniform or adaptive mesh refinements, we prolongate the previous
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solution (say,
(
Y

(ℓ−1,⋆)
2 , . . . , Y

(ℓ−1,⋆)
Ne

)
) to the current mesh (say, {e(ℓ)k }K(ℓ)

k=1 ) as follows:

y
(ℓ,0)
i,kl :=

1

K
(ℓ)
k′l′

y
(ℓ−1,⋆)
i,k′l′ , k, l = 1, . . . ,K(ℓ), i = 2, . . . , Ne, (5.6)

where k′, l′ ∈ {1, . . . ,K(ℓ−1)} are such that e
(ℓ)
k ⊆ e

(ℓ−1)
k′ , e

(ℓ)
l ⊆ e

(ℓ−1)
l′ , and

K
(ℓ)
k′l′ :=

∣
∣
∣

{

(k, l) : e
(ℓ)
k ⊆ e

(ℓ−1)
k′ , e

(ℓ)
l ⊆ e

(ℓ−1)
l′ , k, l ∈ {1, . . . ,K(ℓ)}

}∣
∣
∣ .

The design of the prolongation operator follows that ργi can be understood as a joint probability
density between the positions of the first and ith electrons (i = 2, . . . , Ne). Finally, cheap local

solvers, such as the S-klalm method, start from
(
Y

(ℓ,0)
2 , . . . , Y

(ℓ,0)
Ne

)
and solve the problem over the

current mesh. Consequently, apart from the previously mentioned warm starts, the prolongation
operator also enables “warm samplings”; please refer to the importance sampling probability (3.8).
We summarize our cmg optimization framework in Framework 5.

To demonstrate the utility of Framework 5, we include numerical experiments on the 1D systems.
We call the cmg optimization method, which takes respectively the klalm and S-klalm methods
as the accurate and cheap local solvers, the S-klalm-cmg method. We compare the numerical
performances of the klalm, S-klalm, and S-klalm-cmg methods. For systems 1 and 2, the
klalm and S-klalm methods directly solve the problems with K = 720 and equimass discretization
starting from 10 random trials. The stopping parameters are tol = 2

√
2 × 10−3 and tmax = +∞.

The S-klalm-cmg method starts 10 random trials from K(0) = 90 with equimass discretization and
reaches the desired the mesh after equimass refinements for three times. The stopping parameters

at level ℓ ∈ {0, 1, 2, 3} are tol = 10−3 ×
√
2
log2(K

(ℓ)/K(0))
and tmax = +∞. The settings for the

simulations of systems 3 and 4 are analogous, except that the problem size handled by the klalm and
S-klalm methods is K = 1120 and the initial problem size handled by the S-klalm-cmg method is
K(0) = 140. We report the achieved err obj, err sce, and required T averaged over 10 random trials
given by the three methods on the 1D systems in Table 4. The S-klalm-cmg method is found to
yield relatively high-quality solutions within the least CPU time.
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(a) System 1
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(b) System 2

Figure 7: The achieved err obj, err sce, and required T averaged over 10 trials for each value of
K given by the palm, klalm, and S-klalm methods on the three-electron 1D systems (equimass
discretization). The orange solid lines with square markers are the results of the palm method. The
blue solid and dashed lines with right-pointing triangle markers are the results of the klalm and
S-klalmmethods, respectively. From left to right: err obj, err sce, and T. (a) System 1. (b) System
2.

5.6 Simulations on 2D and 3D systems

We use the S-klalm-cmg method for simulating the 2D and 3D systems in Table 2. The initial step
employs equisize discretization and the latter ones refine the meshes uniformly. For the 2D systems,
the initial mesh size is K(0) = 900 before truncation. After grid refinements for three times, we get
K(3) = 57600 before truncation. For the 3D system 7, we set K(0) = 1728 before truncation and
perform grid refinements twice to arrive at K(2) = 110592 before truncation. For the 3D system 8,
we set K(0) = 1000 before truncation and perform grid refinements twice to arrive at K(2) = 64000
before truncation. The stopping parameters are tmax = 104 and

tol =

{
5× 10−3, ℓ = 0,

10−2 × (
√
2d)log2(K/K(0)), ℓ > 0.

Note that for these systems, no explicit constructions of the optimal solutions are available. Hence,
we monitor instead the evolution of objective values and the approximate SCE potentials. Moreover,
following [42], we approximate the OT maps between electron positions in the so-called Monge ansatz
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(a) System 3
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(b) System 4

Figure 8: The achieved err obj, err sce, and required T averaged over 10 trials for each value of
K given by the palm, klalm, and S-klalm methods on the seven-electron 1D systems (equimass
discretization). The orange solid lines with square markers are the results of the palm method. The
blue solid and dashed lines with right-pointing triangle markers are the results of the klalm and
S-klalmmethods, respectively. From left to right: err obj, err sce, and T. (a) System 3. (b) System
4.

[69–71], which are of particular physical interest, as

Ti(dj) :=
∑

1≤k≤K

yi,jkdk/̺j, j = 1, . . . ,K, i = 2, . . . , Ne,

where Ti : R
d → R

d represents the transport map between the positions of the first and ith electrons.
We collect the results in Table 5 as well as Figures 9 and 10, whereKtrunc ∈ N refers to the dimension
of the truncated ̺. We illustrate the approximate OT maps {Ti}Ne

i=2 through their images of the
barycenters of the finite elements within some given subregion ω ⊆ Ω.

The results in Table 5 and Figure 9 showcase the convergence of the cmg optimization framework,
also manifesting the effectiveness of the prolongation operator therein. The approximate OT maps
in Figure 10 are in line with physical intuitions. In particular, for the three-Gaussian 2D system 5,
Figure 10 (a) implies that if the first electron is around one Gaussian center, the other two electrons
will go near the other two Gaussian centers, respectively. For the four-Gaussian 2D system 6, Figure
10 (b) shows that if one electron revolves around but stays away from the top Gaussian center,
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Framework 5 The cmg optimization framework for problem (5.4).

Input: Discretization and refinement oracles, accurate and cheap local solvers, initial number of
finite elements K(0) ∈ N.

1: Set ℓ := 0.
2: while certain conditions are not satisfied do

3: if ℓ = 0 then

4: Discretization: discretize the MMOT into problem (5.4) with K(0) finite elements

{e(0)k }K(0)

k=1 ⊆ R
d.

5: Construct a random initial point (Y
(0,0)
2 , . . . , Y

(0,0)
Ne

) ∈ (RK(ℓ)×K(ℓ)

)Ne−1.

6: Local solution: start the accurate local solver from (Y
(0,0)
2 , . . . , Y

(0,0)
Ne

) for problem (5.4)

at level 0 and obtain (Y
(0,⋆)
2 , . . . , Y

(0,⋆)
Ne

).
7: else

8: Grid refinement: refine {e(ℓ−1)
k }K(ℓ−1)

k=1 to {e(ℓ)k }K(ℓ)

k=1 ⊆ R
d with K(ℓ) ∈ N.

9: Prolongation: prolongate (Y
(ℓ−1,⋆)
2 , . . . , Y

(ℓ−1,⋆)
Ne

) to the current mesh through equation

(5.6) and obtain (Y
(ℓ,0)
2 , . . . , Y

(ℓ,0)
Ne

) ∈ (RK(ℓ)×K(ℓ)

)Ne−1.

10: Local solution: start the cheap local solver from (Y
(ℓ,0)
2 , . . . , Y

(ℓ,0)
Ne

) for problem (5.4) at

level ℓ and obtain (Y
(ℓ,⋆)
2 , . . . , Y

(ℓ,⋆)
Ne

).
11: end if

12: Set ℓ := ℓ + 1.
13: end while

Output: Approximate solution (Y
(ℓ−1,⋆)
2 , . . . , Y

(ℓ−1,⋆)
Ne

).

Table 4: The achieved err obj, err sce, and required T averaged over 10 trials given by the klalm,
S-klalm, and S-klalm-cmg methods on the 1D systems (equimass discretization).

Algorithms
System 1 (K = 720) System 2 (K = 720)

err obj err sce T err obj err sce T

klalm 0.0006 0.29 7014.57 0.0016 0.31 14190.02
S-klalm 0.0159 0.34 180.51 0.0183 0.34 184.96

S-klalm-cmg 0.0032 0.34 96.32 0.0044 0.38 109.39

Algorithms
System 3 (K = 1120) System 4 (K = 1120)

err obj err sce T err obj err sce T

klalm 0.0031 0.27 288688.75 0.0035 0.30 323734.12
S-klalm 0.0231 0.28 2034.49 0.0238 0.33 1910.36

S-klalm-cmg 0.0074 0.32 1204.31 0.0079 0.36 1252.50

the other three electrons will stay near the three Gaussian centers, respectively, with one of which
surrounded by the first one but keeping away from each other. For the three-Gaussian 3D system 7,
the results depicted in Figure 10 (c) are analogous to those in Figure 10 (a). For the two-Gaussian
3D system 8, Figure 10 (d) indicates that if one electron lies around the Gaussian center [1, 0, 0]⊤, the
other three will be located around the other center, with their positions trisecting a sphere. In Figure
10, the positions of the electrons determined by the approximate OT maps {Ti}Ne

i=2 conform to the
repulsive law and are improved along our optimization process. Notably in Figure 10, we provide
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Table 5: The objective values calculated along the iteration of the S-klalm-cmg method when
solving the 2D and 3D systems. The notation Ktrunc ∈ N is the dimension of the truncated ̺.

Step
System 5 System 6

K Ktrunc obj K Ktrunc obj

0 900 424 1.1339 900 408 3.0690
1 3600 1622 1.1337 3600 1534 3.0690
2 14400 6410 1.1335 14400 6068 3.0677
3 57600 25562 1.1334 57600 24176 3.0667

Step
System 7 System 8

K Ktrunc obj K Ktrunc obj

0 1728 780 1.0202 1000 720 4.6193
1 13824 5628 1.0209 8000 5272 4.6716
2 110592 42936 1.0209 64000 40764 4.6833

the first visualization of the approximate OT maps between electron positions in 3D contexts.

Remark 5. There have been extensive works dedicated to the numerical solutions of the MMOT
(5.1). The authors of [62] consider the Kantorovich dual of the MMOT, whose number of inequality
constraints increases exponentially with Ne. The authors of [11] investigate the entropy regularized
MMOT, where curse of dimensionality still resides. The authors of [48] derive a convex semidefinite
programming relaxation for the discretized N -representability form of the MMOT, where the problem
size is independent from the value of Ne but the gap induced by the convex relaxation remains elusive.
The authors of [5] exploit a moment-constrained relaxation of the MMOT, which admits sparse
optimal solutions but entails careful selections of parameters and test functions to achieve satisfactory
approximations. In both [23] and our work, the reformulation of the MMOT under the Monge-
like ansatz is adopted, where the problem size increases linearly with respect to Ne. However, at
the moment, the ansatz is provably true only for special (e.g., two-electron/one-dimensional/special
radially symmetric) cases [37].

The considerable distinctions in models make a fair numerical comparison difficult and go be-
yond our scope. Nevertheless, we shall note that the model under the Monge-like ansatz explicitly
characterizes the electron-electron couplings. Therefore, in contrast with others, it enables the eval-
uation of solution qualities through approximate OT maps between electron positions; see Figure 10.
Additionally, in comparison with [23] where the authors only consider two-electron systems (i.e., H2

molecule) with discretization size K ∼ 3000, we solve larger-scale problems (K ∼ 105) and simulate
systems with more electrons (Ne = 3 ∼ 7).

5.7 Scalability tests

Finally, we conduct scalability tests for the klalm and S-klalm methods with respect to K and
Ne. The system under simulation shares the same normalized single-particle density ρ with system
1 in Table 2, yet with varying Ne. We employ equimass discretization.

For the tests with respect to K, we fix Ne = 3 and consider K ∈ {90, 180, 360, 720}. For each
value of K, the two methods are called with 10 random trials. The proximal parameter is set to

µ
(t)
i ≡ 0.05. The stopping parameters are tol = 10−3 and tmax = +∞. The achieved err obj, err sce,

and required T averaged over 10 trials are gathered in Figure 11 (a). In light of Table 1, we fit the
linear relation between log(T) and log(K) with linear least squares and obtain the following:

klalm: log(T) ≈ 2.59 log(K)− 7.22;
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Figure 9: The evolution of the approximate SCE potentials for the 2D and 3D systems given by the
S-klalm-cmg method. (a) System 5. (b) System 6.(c) System 7. (d) System 8.

S-klalm: log(T) ≈ 2.21 log(K)− 8.31.
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Figure 10: The approximate OT maps between electron positions for the 2D and 3D systems given
by the S-klalm-cmg method. The pre-image ω in red stands for the positions of the first electron,
while the areas in other colors are the associated positions of the other electrons, respectively,
determined by {Ti}Ne

i=2. (a) System 5. (b) System 6. (c) System 7. (d) System 8.

For the tests with respect to Ne, we fix K = 144 and vary Ne in {3, 6, 12, 24, 48}. For each
value of Ne, the two methods are called with 10 random trials. We fix the proximal parameter

µ
(t)
i ≡ 20/ log(K) because ‖v(t)

i ‖∞ grows with Ne. The stopping parameters are tol = 5× 10−3 and
tmax = +∞. The achieved err obj, err sce, and required T averaged over 10 trials are collected in
Figure 11 (b). Likewise, we obtain the following relations:

klalm: log(T) ≈ 1.31 log(Ne) + 0.32;

S-klalm: log(T) ≈ 1.06 log(Ne) + 0.49.

The obtained scalings of the klalm and S-klalm methods with respect to Ne are in rough
accordance with the computational complexities summarized in Table 1, where τ = 0.5. The marked
deviation in the scalings of the klalm and S-klalm methods with respect to K can be ascribed to
the implementation in software as well as the difference in the numbers of iterations for each value
of K.
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Figure 11: The achieved err obj, err sce, and required T averaged over 10 trials for each value of K
and Ne given by the klalm and S-klalm methods on the cosine-type system (equimass discretiza-
tion). The blue solid and dashed lines represent the results of the klalm and S-klalm methods,
respectively. The pink solid and dashed lines denote the fitted relations between T and K (or Ne)
when using the klalm and S-klalm methods, respectively. Left: err obj. Middle: err sce. Right:
T. (a) Scalability with respect to K. For the klalm method, T ∼ K2.6. For the S-klalm method,
T ∼ K2.2. (b) Scalability with respect to Ne. For the klalm method, T ∼ N1.3

e . For the S-

klalm method, T ∼ N1.1
e .

6 Conclusions

Leveraging the tools from OT and the importance sampling technique, we introduce novel bcd-type
methods, the (S-)eralm and (S-)klalm methods, for the multi-block optimization problems over
the transport polytopes. These methods enjoy highly scalable schemes for the subproblems and
save considerable expenditure for the calculations and storage in large-scale contexts. With the
theory of randomized matrix sparsification, we establish for the eralm and S-eralm methods that
the average stationarity violations tend to 0 as the problem size increases to +∞ (with probability
going to 1). To the best of our knowledge, our work is the first attempt in applying the matrix
entrywise sampling technique to multi-block nonconvex settings with theoretical guarantees. In
the simulations of strongly correlated electron systems, though lacking convergence analysis, the
(S-)klalm methods exhibit desirable robustness to the choices of proximal parameters; compared
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with the klalm method, the S-klalm method trades accuracy for efficiency. Both the klalm and
S-klalm methods are further brought together under a cascadic multigrid optimization framework,
pursuing a decent balance for large-scale simulations. The numerical results conform to both the-
oretical predictions and physical intuitions. The better scalability of the sampling-based methods
allows the first visualization of the approximate OT maps for the 3D systems.

For future work, we are eager to provide some insights into the theoretical advantages of impor-
tance sampling, as evidenced by the numerical results in section 5.4.1. It is also of special interest in
optimization to investigate the convergence properties for the proposed KL divergence-based meth-
ods by exploring routes that do not rest on the local Lipschitz smoothness of the proximal terms.
Computationally, further acceleration can be gained via other techniques, such as support identifi-
cation [52]. In terms of quantum physics application, it is necessary to study the solution landscape
for problem (5.4). Our numerical findings suggest that the objective errors at stationary points
decrease as the discretization becomes finer.

A Convergence of the eralm method

This part includes the proofs of the results concerning the eralm method. We first adapt a lemma
from [46], characterizing the objective error induced by entropy regularization on an arbitrary OT
problem.

Lemma 1. Let W ∈ R
m×n, a ∈ R

m, b ∈ R
n, λ > 0, and I ⊆ {(j, k) : j = 1, . . . ,m, k = 1, . . . , n}.

Suppose that T ′, T ′′ ∈ R
m×n are the optimal solutions of

min
T

〈W,T 〉 , s.t. T ∈ U(a,b), TIc = 0

and
min
T

〈W,T 〉+ λh(T ), s.t. T ∈ U(a,b), TIc = 0,

respectively. Then 0 ≤ 〈W,T ′′ − T ′〉 ≤ −λh(ab⊤).

Proof . See the proof of [46, Lemma 1], which leverages the fact that 0 ≥ h(T ) ≥ h(ab⊤) for all
T ∈ U(a,b).

Next, we provide an upper bound for the size of U(ai,bi) (i ∈ {1, . . . , N}).
Lemma 2. For i ∈ {1, . . . , N}, there holds

‖T − T ′‖ ≤ 2di, for all T, T ′ ∈ U(ai,bi).

Proof . It suffices to bound the norm of an arbitrary member in U(ai,bi). Note that, for any
T ∈ U(ai,bi),

‖T ‖ =

√
√
√
√

mi∑

j=1

ni∑

t=1

t2jk ≤

√
√
√
√

mi∑

j=1

(
ni∑

t=1

tjk

)2

= ‖T1ni
‖ = ‖ai‖

=

√
√
√
√

mi∑

j=1

a2i,j ≤
√

mi‖ai‖2∞ =
√
mi‖ai‖∞.

Similarly, we have ‖T ‖ ≤ √
ni‖bi‖∞. Then by triangle inequality and the definition of di in Theorem

1, we complete the proof.

Based upon Assumption 1 and Lemma 2, the residual function Ri in equation (4.1) enjoys a
Lipschitz-like property, which will be useful for the convergence proof.

30



Lemma 3. Let X ′, X ′′ ∈×N

i=1
U(ai,bi). Suppose that Assumption 1 holds and X ′

i = X ′′
i for some

i ∈ {1, . . . , N}. Then |Ri(X
′)−Ri(X

′′)| ≤ 2diL‖X ′ −X ′′‖.

Proof . Let X̄ ′
i and X̄

′′
i be the optimal solutions of

min
Xi∈U(ai,bi)

〈∇if(X
′), Xi〉 and min

Xi∈U(ai,bi)
〈∇if(X

′′), Xi〉 ,

respectively. Simple algebraic calculations yield

Ri(X
′) =

〈
∇if(X

′), X ′
i − X̄ ′

i

〉
(equation (4.1))

=
〈
∇if(X

′′), X ′
i − X̄ ′

i

〉
+
〈
∇if(X

′)−∇if(X
′′), X ′

i − X̄ ′
i

〉

≤
〈
∇if(X

′′), X ′
i − X̄ ′

i

〉
+ 2diL‖X ′ −X ′′‖ (Assumption 1 and Lemma 2)

=
〈
∇if(X

′′), X ′′
i − X̄ ′

i

〉
+ 2diL‖X ′ −X ′′‖ (since X ′

i = X ′′
i )

≤
〈
∇if(X

′′), X ′′
i − X̄ ′′

i

〉
+ 2diL‖X ′ −X ′′‖ (the definition of X̄ ′′

i )

= Ri(X
′′) + 2diL‖X ′ −X ′′‖. (equation (4.1))

Similarly, one can show Ri(X
′′) ≤ Ri(X

′) + 2diL‖X ′ −X ′′‖. These two together give the desired
result.

With the above tools in place, we are ready to establish an upper bound for the average residual
over the iterate sequence generated by the eralm method.

Proof of Theorem 1. For any i ∈ {1, . . . , N} and t ≥ 0,

f(X
(t+1)
≤i , X

(t)
>i ) ≤ f(X

(t+1)
<i , X

(t)
≥i ) +

〈

C
(t)
i , X

(t+1)
i −X

(t)
i

〉

+
L

2
‖X(t+1)

i −X
(t)
i ‖2

= f(X
(t+1)
<i , X

(t)
≥i ) + α

〈

C
(t)
i , X̃

(t+1)
i −X

(t)
i

〉

+
α2L

2
‖X̃(t+1)

i −X
(t)
i ‖2

≤ f(X
(t+1)
<i , X

(t)
≥i ) + α

〈

C
(t)
i , X̃

(t+1)
i −X

(t)
i

〉

+ 2(diα)
2L

≤ f(X
(t+1)
<i , X

(t)
≥i )− αλh(aib

⊤
i )− αRi(X

(t+1)
<i , X

(t)
≥i ) + 2(diα)

2L,

where the first inequality uses Assumption 1, the second one uses Lemma 2, the last one relies on
Lemma 1 and the definition (4.1) of the residual function Ri. The above relation further gives

αRi(X
(t+1)
<i , X

(t)
≥i ) ≤ f(X

(t+1)
<i , X

(t)
≥i )− f(X

(t+1)
≤i , X

(t)
>i )− αλh(aib

⊤
i ) + 2(diα)

2L. (A.1)

Note that

∣
∣
∣Ri(X

(t+1)
<i , X

(t)
≥i )−Ri(X

(t))
∣
∣
∣

2

≤ 4(diL)
2‖X(t+1) −X(t)‖2 = 4(diL)

2
N∑

i=1

‖X(t+1)
i −X

(t)
i ‖2

= 4(diLα)
2

N∑

i=1

‖X̃(t+1)
i −X

(t)
i ‖2 ≤ 16d̄4L2α2N,

where the first inequality follows from Lemma 3 and the last one is due to Lemma 2. Combining
the above inequality and relation (A.1) yields

αRi(X
(t)) = α

[

Ri(X
(t+1)
<i , X

(t)
≥i ) +

(

Ri(X
(t))−Ri(X

(t+1)
<i , X

(t)
≥i )
)]
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≤ f(X
(t+1)
<i , X

(t)
≥i )− f(X

(t+1)
≤i , X

(t)
>i )− αλh(aib

⊤
i ) + 4d̄2α2L

√
N + 2(diα)

2L

≤ f(X
(t+1)
<i , X

(t)
≥i )− f(X

(t+1)
≤i , X

(t)
>i ) + αλh̄+ 2d̄2α2L(2

√
N + 1).

Summing the above inequality over i from 1 to N and dividing both sides by α, one obtains

R(X(t)) ≤ f(X(t))− f(X(t+1))

α
+Nλh̄+ 2d̄2LN(2

√
N + 1)α.

Summing the above relation over t from 0 to tmax−1 and dividing the both sides by tmax, we complete
the proof after noting f(X(tmax)) ≥ f , the definition of α in equation (4.2), and 2N(2

√
N + 1) <

(2N + 1)2. Incidentally, the lower bound for tmax in equation (4.2) ensures α ≤ 1.

Proof of Corollary 1. By Assumption 2 (i)-(iii), it is not hard to derive that

d̄ =
N

max
i=1

min{√mi ‖ai‖∞ ,
√
ni ‖bi‖∞} = Θ

(
N

max
i=1

min

{
1√
mi

,
1√
ni

})

,

h̄ =
N

max
i=1

∑

j,k

ai,jbi,k(1− log ai,jbi,k) = Θ

(
N∑

i=1

logmini

)

.

Based on the above bounds, the first term on the right-hand side of inequality (4.3) goes to 0

if tmax = Ω(
∑N

i=1(mi + ni)
η) with η > θ and M independent from {mi}Ni=1 and {ni}Ni=1, and the

second one goes to 0 if λ = o(1/
∑N

i=1 logmini). The proof is complete.

B Convergence of the S-eralm method

We define the following auxiliary sequences:

X̄
(t+1)
i ∈ argmin

Xi

〈

C
(t)
i , Xi

〉

, s.t. Xi ∈ U(ai,bi), i = 1, . . . , N, t ≥ 0,

X̆
(t+1)
i = argmin

Xi

〈

C
(t)
i , Xi

〉

+ λ̂h(Xi), s.t. Xi ∈ U(ai,bi), i = 1, . . . , N, t ≥ 0.

Proof of Theorem 2. For any i ∈ {1, . . . , N} and t ≥ 0,
(

f(X
(t+1)
≤i , X

(t)
>i )− f(X

(t+1)
<i , X

(t)
≥i )
)

/α− 2d2iLα (B.1)

≤
(

f(X
(t+1)
≤i , X

(t)
>i )− f(X

(t+1)
<i , X

(t)
≥i )
)

/α− Lα‖X̃(t+1)
i −X

(t)
i ‖2/2

=
(

f(X
(t+1)
≤i , X

(t)
>i )− f(X

(t+1)
<i , X

(t)
≥i )− L‖X(t+1)

i −X
(t)
i ‖2/2

)

/α

≤
〈

C
(t)
i , X

(t+1)
i −X

(t)
i

〉

/α =
〈

C
(t)
i , X̃

(t+1)
i −X

(t)
i

〉

=
〈

Ĉ
(t)
i , X̃

(t+1)
i

〉

+
〈

C
(t)
i − Ĉ

(t)
i , X̃

(t+1)
i

〉

−
〈

C
(t)
i , X

(t)
i

〉

=
〈

Ĉ
(t)
i , X̃

(t+1)
i

〉

−
〈

C
(t)
i , X̄

(t+1)
i

〉

︸ ︷︷ ︸

I1

+
〈

C
(t)
i − Ĉ

(t)
i , X̃

(t+1)
i

〉

︸ ︷︷ ︸

I2

−Ri(X
(t+1)
<i , X

(t)
≥i ),

where the first inequality follows from Lemma 2, the second one uses Assumption 1, and the last
equality uses the definition (4.1) of the residual function Ri.

Next, we seek to bound I1 and I2 in relation (B.1). For the latter,

〈

C
(t)
i − Ĉ

(t)
i , X̃

(t+1)
i

〉

≤ di‖Ĉ(t)
i − C

(t)
i ‖ = diλ̂

√
√
√
√

∑
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i

log2
(
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)
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≤ diλ̂

√

|I(t)
i | log2 1

(1− γ)wins,i
= diλ̂

√

|I(t)
i | log 1

(1− γ)wins,i
,

where the first inequality comes from the proof of Lemma 2 and the second one uses the formula
(3.8) and Assumption 3 (ii), the first equality follows from equation (3.12) and Assumption 3 (ii).
Following Hoeffding’s inequality, for any ι > 0,

P

(

|I(t)
i | ≥ ns,i + ι ·mini

)

≤ exp
(
−2ι2mini

)
.

Therefore, with probability no less than 1− exp(−2ι2mini), we have
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i , X̃
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i

〉

≤ diλ̂
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. (B.2)

Regarding the former term I1,
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where the first inequality uses Lemma 1 (with I = I(t)
i ), the second one leverages h(X̆

(t+1)
i ) ≤ 0,

h(X̃
(t+1)
i ) ≥ h(aib

⊤
i ), and the definition (3.4) together with the strong duality and the optimality of

(ũ
(t,⋆)
i , ṽ

(t,⋆)
i ) in problem (3.10), the last one follows from [54]. To bound the first term on the right-

hand side of the inequality (B.3), we resort to [2, Theorem 3.1]. Specifically, for any j ∈ {1, . . . ,mi},
k ∈ {1, . . . , ni}, it holds by equation (3.8) and Assumption 3 that
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In addition, ψ̂
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Then, by Theorem 3.1 in [2],
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(B.4)

<
c1(1 + ε+ ζ) log2(1 + ε)

log2(mi + ni)− c1(1 + ε+ ζ) log2(1 + ε)
.

Combining relations (B.1) to (B.4), we have, with probability no less than

[

1− 2 exp

(

−16ζ2

ε4
log4(mi + ni)

)]
[
1− exp

(
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,

that

f(X
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,

which implies
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Following similar arguments for proving Theorem 1 and noticing the definition of c3, one obtains
the desired result.

Proof of Corollary 2. Assumption 2 implies bounds for d̄, h̄ (see the proof of Corollary 1 in Appendix
A) and also wi = Θ(1/mini) (i = 1, . . . , N).

The first term on the right-hand side of inequality (4.4) tends to 0 if tmax = Θ(
∑N

i=1(mi + ni)
η)

with η > θ and M independent from {mi}Ni=1 and {ni}Ni=1. For a fixed ι > 0, since

N∑
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√
ns,i + ι ·mini log
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= O
(
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[ √
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log2(mi + ni) +
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mini
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log
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,

with the choices of {ns,i}Ni=1, the second and third terms tend to 0 if

λ̂ = o

(

1
∑N

i=1

√
mini log(mi + ni)

)

and ε, ν, γ are independent from {mi}Ni=1 and {ni}Ni=1. Incidentally, the choices of {ns,i}Ni=1 do not
conflict with Assumption 3 (ii) by virtue of Remark 3. Since c1, c2, and ĉ2 are also independent

from {mi}Ni=1 and {ni}Ni=1, the last term vanishes as
∑N

i=1(mi+ni) → +∞. Finally, the probability
is not less than

N∏

i=1

{[
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−16ζ2

ε4
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1− exp

(
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,

which, by Assumption 2 (iv), goes to 1 as
∑N

i=1(mi + ni) → +∞ after choosing ζ > 0 such that
ζ >

√
ηε2/4. The proof is completed.
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Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, eds.), Vol. 32, Curran Associates, Inc., 2019, pp. 8118–
8129.
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