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ABSTRACT

Optimal transport (OT) methods and their variants have become increasingly prominent tools in computer science and machine
learning, owing to their appealing geometric properties and powerful potency. Despite broad applications, OT methods suffer
from prohibitively high computational cost, limiting the scalability even for moderately sized datasets. To address this challenge,
regularized OT formulations and the corresponding Sinkhorn algorithm have emerged as standard alternatives to improve effi-
ciency. However, these methods still face the high per-iteration cost and slow convergence rate drawbacks. Sparsification tech-
niques have emerged as an effective and practically valuable class of methods for mitigating these computational bottlenecks
by leveraging inherent or induced sparsity in the matrices involved in OT optimization. Broadly, sparsification methods can be
grouped into two main categories: (1) kernel-based sparsification building on the primal regularized OT formulation, and (2)
Hessian-based sparsification, derived from the dual formulation. In this survey, we provide an extensive and comprehensive
review of sparsification techniques developed for OT problems, highlighting their underlying motivations, algorithmic distinc-
tions, and theoretical guarantees.

This article is categorized under:

Statistical and Graphical Methods of Data Analysis > Sampling

Algorithms and Computational Methods > Computational Complexity

1 | Introduction

In the 18th century, the French mathematician Gaspard
Monge formulated a fundamental transportation problem in-
volving a pile of sand (Monge 1781): given a distribution of
sand (referred to as the déblai) and a collection of holes or pits
(the remblai) to be filled, the goal was to move the sand in such
a way that the piles exactly fill the holes. There are many pos-
sible ways to transport the sand, each associated with a global

© 2026 Wiley Periodicals LLC.

transportation cost, which aggregates the local effort to move
each individual grain from its original location to a destina-
tion. The central question is how to find an efficient transport
plan that minimizes the total cost of moving the sand from
the source to the target. To generalize the problem, both the
sand and the holes can be modeled as mass distributions over
a spatial domain, mathematically represented by two proba-
bility measures, denoted by u and v, respectively. The central
objective is to determine the most efficient way to transport y
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to v. This leads to the optimal transport (OT) problem, a pow-
erful and widely used framework for comparing probability
distributions (Villani 2008).

More specifically, the OT problem can be interpreted from a
resource allocation perspective (Peyré and Cuturi 2019; Zhang
et al. 2021; Zhang, Ma, et al. 2023). Consider a scenario in which
an operator manages n warehouses and m factories. Each fac-
tory has a specified demand for raw materials stored in the
warehouses. It is assumed that the total supply exactly matches
the total demand, and that all available resources must be trans-
ported from the warehouses to fulfill the factories' needs. The
objective of the OT problem in this context is to determine a
transportation plan that allocates materials from warehouses to
factories in a way that minimizes the total logistic cost, while
fully satisfying the demand at each factory. The cost is typically
modeled as the total amount of material transported multiplied
by the distance over which it is shipped, aggregated over all
warehouse-factory pairs.

Due to the natural formulation across diverse contexts and the
ability to capture the underlying geometry of data, OT methods
have shown remarkable adaptability in modern data science ap-
plications. Numerous tasks in statistics and machine learning
can be fundamentally reduced to comparing probability distri-
butions. For example, generative adversarial networks (GANs)
seek to align the distribution of generated samples with that of
real data (Goodfellow et al. 2014; Arjovsky et al. 2017; Gulrajani
et al. 2017). In semantic matching, word embeddings can be in-
terpreted as distributions, and OT provides a means to quantify
their structural divergence (Werner and Laber 2020; Yurochkin
et al. 2019). In domain adaptation, the goal is to adapt a model
trained on a source domain to perform effectively on a differ-
ent target domain, often requiring alignment between their
respective data distributions (Courty et al. 2016; Muzellec and
Cuturi 2019). Thus, OT methods have found widespread applica-
tions across computer science and machine learning, including
computer vision (e.g., image registration, style transfer) (Petric
Maretic et al. 2019; Wang et al. 2021; Luo, Xu, and Carin 2022;
Vincent-Cuaz et al. 2022; Wang et al. 2023, 2025), generative
modeling (such as GANs and variational models) (Tolstikhin
et al. 2018; Deshpande et al. 2019; Lei et al. 2019), natural lan-
guage processing (e.g., word embedding alignment, semantic
similarity) (Xu et al. 2018; Grave et al. 2019; Wang et al. 2020;
Yu et al. 2022; Fang et al. 2025), domain adaptation (Courty
et al. 2014; Flamary et al. 2016), and knowledge distillation
(Nguyen and Luu 2022; Yang et al. 2023). In statistics, OT has
been widely used for tasks such as two-sample testing (Ramdas
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et al. 2017), Wasserstein barycenter computation (Cuturi and
Doucet 2014; Claici et al. 2018; Xu et al. 2021), estimation and sta-
tistical inference (Blanchet et al. 2021; Tameling and Munk 2018;
Meng et al. 2020; Zhang, Meng, et al. 2023; Kroshnin et al. 2021;
Zemel and Panaretos 2019; Klatt et al. 2020), and empirical pro-
cess theory (Fournier and Guillin 2015; Weed and Bach 2019;
Horowitz and Karandikar 1994; Si et al. 2020). In addition to
these established areas, OT has also shown promise in emerg-
ing fields such as algorithmic fairness (Zehlike et al. 2020) and
distributional clustering (Farnia et al. 2022; Li et al. 2024), fur-
ther demonstrating its versatility in handling distributional and
geometric tasks.

Beyond the original formulation of OT, several mathematical
extensions have been developed, such as the unbalanced OT
(UOT, Chizat et al. 2018; Pham et al. 2020) and the Gromov-
Wasserstein (GW) distance (Mémoli 2011). The UOT problem
relaxes the strict mass conservation constraint by allowing the
total mass to differ between the source and target distributions.
In this setting, the goal is to seek an optimal transport plan be-
tween two measures that may not exactly match the original
distributions g and v, but are instead close to them in some diver-
gence sense. This generalization enables UOT to be well suited
for real-world scenarios where exact mass preservation does not
hold, such as in the presence of noise, corrupted data, or outliers.
Another important extension of the OT framework is the GW
distance, which enables the comparison of the internal geomet-
ric structures of two probability measures, even when they are
supported on different metric spaces. Unlike the classical OT
formulation, which seeks to align individual points across two
distributions defined on a common ground space, the GW dis-
tance aligns the pairwise distance relationships within each dis-
tribution. In other words, GW compares how well the relational
structure (e.g., distance matrices) of one space can be mapped
onto that of another, rather than matching points based on
their absolute positions. Figure 1 presents schematic examples
of horse registration under different OT formulations, with the
horse data taken from Sumner and Popovi¢ (2004). In Figure 1a,
the classical OT formulation aligns two 3D horse point clouds
by seeking the most efficient transport plan from one running
horse to another exhibiting a different motion style but pre-
serving an overall similar structure. Figure 1b illustrates the
UOT formulation, which applies to a more challenging scenario
where the masses differ between two distributions, for example,
transporting a full horse point cloud to a partial horse torso. In
contrast to OT and UOT, the GW formulation in Figure 1c en-
ables registration across different metric spaces, such as map-
ping a horse point cloud to a 3D mesh model.

Horse Torso Horse Horse
(3D point cloud)

(3D model)

(a) OT

(b) UOT

(©) GW

FIGURE1 | Comparison of different OT formulations. (a) The classical OT aligns two 3D horse point clouds that share a similar overall structure,
transporting a running horse to another of a different motion style. (b) The UOT formulation accommodates unequal total masses, enabling the reg-

istration of a full horse point cloud to a partial torso. (c) The GW formulation establishes correspondences across different metric spaces, exemplified

by mapping a horse point cloud to a 3D mesh model.
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Although OT has found widespread applications across various
domains, its original formulation as a linear program incurs a
prohibitively high computational cost (Rubner et al. 1997; Pele
and Werman 2009), typically with super-cubic complexity in the
number of data points. To alleviate this issue, Cuturi (2013) intro-
duced a regularized OT formulation by adding an entropic pen-
alty to the objective. This modification transforms the original
problem into an optimization task that can be solved efficiently
via iterative matrix-vector operations, reducing computational
burden from super-cubic to approximately quadratic. Due to its
favorable properties (such as parallelizability, smoothness, and
differentiability), the resulting Sinkhorn algorithm has become
a standard and widely adopted method for solving OT problems,
particularly in large-scale and differentiable learning settings
(Montavon et al. 2016; Eisenberger et al. 2022). Moreover, sim-
ilar regularization techniques have also been extended to the
computation of the GW distance. The original GW formulation
poses significantly greater computational challenges compared
to the classical OT. It has higher computational complexity in-
volving fourth-order tensor product and is known to be NP-hard
as it corresponds to solving a nonconvex, non-smooth optimiza-
tion problem (Peyré et al. 2016; Solomon et al. 2016). To address
this issue, various forms of regularization (such as the Bregman
proximal term or entropic regularizer) have been introduced
into the GW objective (Peyré et al. 2016; Xu et al. 2019). These
relaxations enable the use of Sinkhorn-like iterative algorithms,
which significantly improve computational efficiency and make
the problem more tractable in large-scale settings.

Despite the computational improvements brought about by en-
tropic regularization, the Sinkhorn algorithm still suffers from
several practical limitations. For example, each iteration of the
Sinkhorn algorithm requires dense matrix operations with qua-
dratic memory and time complexity, and the algorithm typically
exhibits sublinear convergence in common settings (Altschuler
et al. 2017; Peyré and Cuturi 2019; Carlier 2022). Sparsification
techniques have emerged as an effective and practically import-
ant class of methods to alleviate these bottlenecks. Taking advan-
tage of the inherent or induced sparsity in the matrices involved
in OT optimization, these methods aim to reduce computational
overhead while preserving the accuracy of the solution. In the
past few years, substantial efforts have been devoted to develop-
ing sparsity-aware variants of Sinkhorn-based algorithms to en-
hance their scalability (Lin et al. 2022; Li, Yu, Li, and Meng 2023;
Gasteiger et al. 2021; Nguyen et al. 2023; Tang et al. 2024; Tang
and Qiu 2024; Wang and Qiu 2025). In this survey, we provide a
comprehensive review of such techniques, with a focus on how
sparsification contributes to (i) reducing per-iteration computa-
tional cost and (ii) accelerating convergence. We will introduce
two representative kinds of sparsification-based OT methods,
detailing their underlying motivations, algorithmic distinctions,
and practical computational complexities.

The remainder of this article is organized as follows: In
Section 2, we provide a brief overview of the OT problem and
several important variants of its original formulation. We also
outline the role of sparsification in optimizing Sinkhorn-based
algorithms from two perspectives: reducing per-iteration com-
putational cost and improving convergence behavior. Sections 3
and 4 present detailed discussions of these two aspects, respec-
tively. Section 5 introduces additional related works, such as

partial-update OT and mini-batch OT, and distinguishes among
these methods. Finally, Section 6 concludes the survey and high-
lights potential future directions.

2 | Problem Formulation

In this section, we begin by providing a mathematical over-
view of the classical OT problem, including both the Monge
formulation and the Kantorovich formulation. We then intro-
duce several widely used extensions of OT and present their
corresponding mathematical formulations in detail, including
entropic-regularized OT, unbalanced OT, and the GW distance.
Finally, we discuss the computational bottlenecks that arise
in large-scale OT problems and introduce the motivation for
sparsification-based methods. We conclude this section with a
review of recent advances in sparsification techniques that have
been proposed to improve the scalability and efficiency of OT
solvers.

2.1 | Notations

Throughout this survey, we adopt the following notational
conventions. We adopt the standard convention of using up-
percase boldface letters for matrices, lowercase boldface let-
ters for vectors, and regular font for scalars. We denote by
1, € R" the vector of all ones. The exponential and division
operators in expression exp{ —A/A} are applied element-
wise, with a scalar 4> 0. For two probability mass vectors
a,be Rﬁ, the Kullback-Leibler divergence between them
is defined as KL(al|lb)=Y  a;log(a;/b;)) —a;+b; with
the standard convention that 0log(0) =0. The division op-
erator @ and multiplication operator ® between two vectors
are also applied element-wise. For matrices A and B of the
same dimension, the Frobenius inner product is denoted by
(A,B) = ¥, ;A;B;. Given a coupling matrix P € R, we denote

H(P)=3_, P;(1-1logP;) as the Shannon entropy of P, and

we adopt the standard convention that 0log(1/0) = 0. We use
|| - || to represent the Euclidean norm for vectors and the oper-
ator norm for matrices. The £;-norm and £ ,-norm are denote
by |||l and ||-||,, respectively, and may be applied to both vec-
tors and matrices. The general #,-norm for vectors is denoted
by ||-|l, Finally, for two non-negative sequences {x, } and {y, },
we write x, = O(y,) if there exist constants ¢,¢’ > 0 such that
x, < c'y,(log(n))° for all sufficiently large n.

2.2 | The Monge Formulation

Consider the illustrative example presented in Section 1: the
task of transporting sand into a collection of holes with minimal
total effort can be mathematically formulated as an OT prob-
lem, where the goal is to find the most efficient way to move a
probability measure x4 onto another probability measure v. The
solution that minimizes the total transport cost is called the OT
map if a deterministic mapping is sought (as in the Monge for-
mulation). Mathematically, let 4 and v be two probability mea-
sures supported on R% For a measurable function T:R¢ — R,
the push-forward of y by T, denoted by T, 4, is defined by
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T, u(Q) = pu(T™(Q)), VBorel sets @ R

Intuitively, T describes how individual points in the domain
are transported, and T, is the induced transformation of u. Let
I, (4, v) = {T:R? - R?| Tismeasurableand T, = v}  denote
the set of all plausible transport maps that push y forward v. The
Monge formulation of OT problem is then defined as

OTI(M’V):Teir%w)/c(x’ Tx)du(x), T* = arginf /c(x, T(x))du(x),

T eIl (u,v)
@

where ¢(-, -): R? x R - R is the ground cost function. A widely
used choice is the pth power of the Euclidean distance, that is,
c(x,y) = |lx —y||’ with p > 1. The solution of OT; (u, v) is the OT
map, denoted by T*: R — R“.

However, the Monge formulation is not always well defined, as
the set of admissible transport maps may be empty; that is, there
may exist no measurable map T such that T,u = v. A classical
counterexample arises when y is a Dirac measure concentrated
at a single point, while v is a continuous probability measure or
places mass on multiple disjoint points. In such cases, no deter-
ministic map can push forward all mass from a single location
to a distribution that spreads mass across multiple target points.
This limitation stems from the fact that the Monge formula-
tion does not allow mass splitting, only restricting transport to
pointwise (non-branching) mappings.

2.3 | The Kantorovich Formulation

The Kantorovich formulation (Kantorovich 1942) addressed
this limitation by allowing mass splitting from a source point
to multiple target locations, relaxing the deterministic map to
a probabilistic transportation. Specifically, it replaces the trans-
port map T with a joint probability measure z on the product
space RY x RY, referred to as a coupling between  and v. In this
more general setting, the mass conservation condition is relaxed
to marginal distribution constraints on the coupling z, which
must satisfy:

(u,v)={r€P(R*XR?)| 7(AXR?) = u(A), 7(R? x B)
=v(B), VBorel setsA, BC Rd}.

The Kantorovich formulation of the OT problem is then written
as follows:

OTz(ﬂ,V)=”Eig(fﬂ ) / c(x,y)dz(x,y), =* = arginf / c(x,y)dz(x,y),

rell(u,v)

@

where c(-, -) is the cost function defined earlier. The solution
x* that achieves the infimum in OT,(u, v) is called the OT plan.

For the discrete case, the probability measures  and v are ap-

proximated by two empirical distributions supported on the
n m .

bound subsets {x;}_, and {yj}j=1 C RY, respectively. These

distributions are associated with the probability mass vectors

a=(a1,...,an)TE|R{" and b=(b1,...,bm)T€Rm, where

the entries satisfy a; >0,b; >0, and X1, ;= X", b; =1 Let
C = (C;) € R™™ denote the cost matrix, where each entry is

given by C;; = c(x;, yj). A common choice for the cost function
2
is the squared Euclidean distance, that is, C;; = Hxi —yj“ . Let

P = (P;) € R’ represent a transport plan, where P; denotes
the amount of mass to be transported from x; to y;. Under the
marginal constraints ensuring mass conservation, the set of fea-
sible transport plans takes the form

Ii(a,b) = {P € R?"|P1,,=a,P"1, =b}. ®3)

Under this formulation, the Kantorovich problem defined in
Equation (2) reduces to the following finite-dimensional linear
program:

. . .
OTz(a’b)_Pelg(fa,b)<C’P>’ P _gégré‘rll,g)(c,P), @

where the corresponding OT plan P* is the solution that attains
the minimum of OT,(a, b).

Building upon the resource allocation perspective introduced in
Section 1, we consider a scenario involving n warehouses located at
positions {xl-}:lzl, each storing an amount a; of raw materials, and
m factories located at positions {y; };:1, each requiring a demand b,
of raw materials. The total supply and demand are assumed to be
balanced, that is, 3, a; = X", b; = 1, and no material is lost or
created during transportation. A transport plan P; represents the
amount of material transported from warehouse x; to factory y;,
and the associated transport cost Cj; typically reflects the distance

between them, often modeled as the squared Euclidean distance,
2
that is, C;; = “xl- —yj” . Under this setting, the feasible transport

plans are subject to marginal constraints ensuring that the mass
dispatched from each warehouse and received by each factory
matches the prescribed supply and demand, respectively (as de-
fined in Equation 3). The total cost incurred by the operator is cal-
culated as the sum of transported mass multiplied by the respective
cost, aggregated over all warehouse-factory pairs. Consequently,
the OT problem in this context amounts to solving the linear pro-
gram formalized in Equation (4), to determine an OT plan P*.

Compared to the Monge formulation, the Kantorovich formu-
lation offers several advantages. First, the Kantorovich formu-
lation guarantees the existence of a feasible solution. The set of
admissible couplings I1(a, b), which consists of all joint distribu-
tions with marginals a and b, is always non-empty, ensuring the
existence of a solution to Equation (4). Second, the Kantorovich
problem can be cast as a linear program, specifically a form of
the classical minimum-cost network flow problem. This con-
vex structure allows for the use of efficient and well-established
linear programming techniques and solvers. Third, the
Kantorovich formulation is inherently more flexible and appli-
cable in practical scenarios due to its allowance for mass split-
ting. This is especially relevant in applications such as resource
allocation, where, for example, a single warehouse may need to
supply materials to multiple factories. In addition, Brenier's the-
orem (Brenier 1991) establishes a fundamental connection be-
tween the two formulations. Specifically, when the cost function
is given by c(x,y) = |[x—y||%, and at least one of the measures u
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or v has a density, then the OT plan in the Kantorovich formu-
lation corresponds to a deterministic transport map, as required
by the Monge formulation. Throughout this survey, we focus ex-
clusively on the Kantorovich formulation.

2.4 | Wasserstein Distance

An important feature of OT is its ability to define a meaning-
ful distance between probability measures. Specifically, when
the cost function c(x,y) is a ground metric on RY, then the OT
problem gives rise to the Wasserstein distance, which quanti-
fies the dissimilarity between probability distributions in a
geometry-aware manner. Let a and b be two discrete probability
vectors. When the cost matrix is chosen as the pth power of the

P
Euclidean distance, that is, Cij = ”xi _ny ,p > 1, the associated

p-Wasserstein distance in Equation (4) is defined as

»

W,(a,b) = <P ér?(ﬁ,m(c’P))

Intuitively, the Wasserstein distance captures the minimal total
“transport cost” required to morph one distribution into an-
other, effectively lifting the ground metric on the sample space
to a metric on the space of probability measures. This enables
a geometry-aware comparison of distributions, even when their
supports are disjoint. The Wasserstein distance possesses sev-
eral desirable properties that distinguish it from traditional
divergence measures such as the Kullback-Leibler divergence,
Jensen-Shannon divergence, or total variation distance. In par-
ticular, it provides a meaningful notion of dissimilarity even
when the distributions have mismatched supports, explicitly
capturing the spatial displacement between probability masses.
Moreover, its strong geometric interpretability makes it espe-
cially suited for tasks that require an understanding of the struc-
tural relationship between distributions. Thus, the Wasserstein
distance has found exceptionally broad application in mod-
ern machine learning, notably in deep generative modeling
(Tolstikhin et al. 2018; Deshpande et al. 2019; Lei et al. 2019),
and in the analysis and processing of natural language and vi-
sual data (Rolet et al. 2016; Balikas et al. 2018; Xu et al. 2018).

2.5 | Entropic-Regularized OT

Without loss of generality, we assume that m and n are of the
same magnitude, that is, set m =n throughout the remain-
der of this survey unless otherwise specified. The calculation
of the original OT problem, as formulated in Equation (4), in-
volves solving a large-scale linear programming problem. The
corresponding computational complexity is typically at the
order of O(n3 log(n)) (Pele and Werman 2009), which becomes
prohibitive even for moderately sized datasets. This issue was
bypassed by Cuturi (2013), which proposed approximating the
solution by adding an entropic penalty term to the objective
function, resulting in the entropic-regularized OT problem.
This work demonstrated the computational advantages of the
entropic formulation and its compatibility with loss functions
in modern machine learning pipelines, including support for

ALGORITHM1 | Computation of entropic-regularized OT.

1: Input: Kernel matrix K, probability mass vectors a, b
2: Initialize: t « 0,v©® « 1,

3:repeat

4: t<—t+1

5 u® —«a@Kv' Y v —«be K u®

6: until convergence

7: Output: P} = diag(u®)K diag(v®)

parallel computation and automatic differentiation. In prac-
tice, the entropic-regularized OT problem corresponding to
Equation (4) is defined as

OT,(a,b) = Peig(fa,b)w,P) — AH(P), )

where 4 > 0 is the regularization parameter.

The entropic-regularized OT problem can be efficiently ap-
proximated using an iterative matrix scaling procedure known
as the Sinkhorn algorithm (Sinkhorn 1964; Sinkhorn and
Knopp 1967). Given the kernel matrix K = exp{ — C/ 4}, it can
be shown (Cuturi 2013; Peyré and Cuturi 2019) that the OT plan
P’ corresponding to Equation (5) can be expressed as a projec-
tion of K onto the set of couplings Il(a, b). Specifically, it takes
the form:

P = diag(u*)K diag(v*), ©)

where u* and v* are scaling vectors that can be computed itera-
tively. Sinkhorn algorithm is summarized in Algorithm 1.

It can be noted that Sinkhorn algorithm only involves matrix-
vector multiplication operations, whose computation is par-
allel and GPU friendly, effectively improving the efficiency.
Franklin and Lorenz (1989) established the linear convergence
of Sinkhorn's iterations with respect to (w.r.t.) the Hilbert pro-
jective metric by demonstrating that each iteration constitutes
a contraction mapping under this metric. However, in practical
applications, the Sinkhorn algorithm typically incurs a near-
linear convergence with a computational cost of order (5(1’12),
where O(-) suppresses logarithmic factors. More precisely, the
complexity is @(Ln?), where L denotes the total number of iter-
ations. This iteration count L depends on the convergence ac-
curacy and the total mass of the kernel matrix, which is often
bounded above by a quantity smaller than log(n). We refer the
reader to Altschuler et al. (2017), Peyré and Cuturi (2019), and
Carlier (2022) for a detailed review of the convergence of the
Sinkhorn algorithm.

2.6 | Unbalanced OT

Classical OT relies on the restrictive assumption that the total
mass of the two marginal measures must be equal. This limitation
can be problematic in applications where one needs to handle ar-
bitrary (unnormalized) positive measures or allow for partial mass
transport. Unbalanced OT (UOT) addresses this issue by relaxing
the hard marginal constraints into soft ones, introducing a penalty
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for mass variation instead of enforcing exact conservation. A com-
mon formulation of UOT incorporates a penalty on marginal de-
viation using the Kullback-Leibler divergence and is expressed as:

UOT(a, b) = . é%gxn<C,P> +7KL(P1,|la) + TKL(P'1, | b),

where the KL divergence terms softly enforce marginal align-
ment by penalizing discrepancies between the marginals of the
transport plan (P1,,P'1,) and the source/target mass (a, b).
The regularization parameter = > 0 controls this relaxation, bal-
ancing the trade-off between transport effort and fidelity to the
input measures. Ast — oo, the soft constraints become the orig-
inal hard ones, and the UOT formulation reduces to the classical
OT problem described in Equation (4).

Similarly, the regularization techniques can be applied to UOT
problems to mitigate high computational costs and improve
scalability. Consider the following entropic-regularized formu-
lation of UOT:

UOT, ,(a,b) = R ierglxn(C,P> +7KL(P1,|la) + tKL(P'1,||b) — AH(P),
@)

where 7 > 0 and 4 > 0 are regularization parameters. The ob-
jective in Equation (7) is strictly convex w.r.t. P over R, and
therefore admits a unique solution (Chizat et al. 2018; Pham
et al. 2020). It can be efficiently solved via iterative matrix scal-
ing with kernel matrix K = exp{ — C/ A}. Chizat et al. (2018)
proposed a generalized Sinkhorn algorithm to address this
problem, as outlined in Algorithm 2. Notably, as 7 — oo, we
have 7 /(r + A) — 1, causing the update steps for u and v in
Algorithm 2 recover those in the classical Sinkhorn algorithm,
given in Algorithm 1. Furthermore, Pham et al. (2020) showed
that the computational complexity of the unbalanced Sinkhorn
algorithm is of order O(n?).

2.7 | The Gromov-Wasserstein Distance

The classical OT formulation (or Wasserstein distance) considers
that the input probability measures are supported on the same
underlying metric space. The Gromov-Wasserstein (GW) distance
generalizes this framework to handle probability distributions
supported on different metric spaces, making it well-suited for
structural matching tasks. Specifically, the GW problem measures
the minimal distortion required to align the intrinsic distance
structures of two metric measure spaces via a joint coupling of

ALGORITHM 2 | Computation of entropic-regularized UOT.

1: Input: Kernel matrix K, probability mass vectors a, b,
regularization parameters z,

2: Initialize: t < 0,u©® < 1,,v® « 1,

3: repeat

4 t<t+1 . .

5 u® (a @Kv(!—l)) i p® (b @KTu(’)) )

6: until convergence

7: Output: P, = diag(u®)K diag(v"?)

their distributions. Given two metric measure spaces (X,dy, 1)
and ()7, dy, v), where d, and dy are respective distances and p, v
are probability measures, the squared GW distance is defined as

GW((dx,”)’(dy’ V))

= inf JL yﬁ(dx(x,x’),dy(y,y’))dzr(x,y)dn(x’,y’),

zell(p,v)

where £(dy (x,x"),dy(,y")) is the ground cost function. Typical
choices include the ¢, loss (i.e., £(x;,X,) = |x; —x,|>) and the KL
divergence (i.e., £(x;,x,) =x; log(x; /x,) —x; +x,). Intuitively,
the construction of the GW is under the assumption that if a
point x € X is matched to y € Y, and x’ to y’, then the distance
dy (%,x") should closely match dy (y,y’). This alignment of pair-
wise distances enables GW to compare structural information
across different domains. Figure 2 provides this geometric illustra-
tion and highlights the differences between the GW distance and
the Wasserstein distance (i.e., the classical OT formulation). The
GW distance compares distributions defined on different metric
spaces by aligning their internal pairwise distances, whereas the
Wasserstein distance compares distributions defined on a com-
mon metric space by aligning individual points directly.

To broaden the applicability of GW, Peyr¢ et al. (2016) relaxed
the requirement of d, and dy, by allowing similarity matrices
as inputs. Given two such similarity matrices C¥ = (C%) € R™"
and €Y = <C3f) € R™", which encode pairwise relations (e.g.,
the kernel matrix and the adjacency matrix of a graph), the GW

problem becomes

— i Yy
GW((C*,a),(C”,b)) _Pelﬁl(ﬁibiﬂZ‘N’[:(C;,Cﬁ,>PijPi/j/

= i X y 8
Pell_lil(g’b)<£(c ,cY)®P,P) (8

=, dnf (C(P),P),

where the term L C;}f,ij PPy, can be interpreted as
the cost of jointly transporting the pair (i,i’) to (j,j'), and
C(P)=L(C*,CY) @ P. The second line rewrites the objec-

tive using a tensorized matrix form (Peyré et al. 2016), where

£(c*,c”) is a 4th-order cost tensor with entries £( CyY, ij 2
and the contraction C(P) € R™" denotes the tensor-matrix mu

tiplication defined by

Y. dy) (2,dz)

(X, dx)

L(dx(x,x"), dy(y,¥")

(a) The GW distance. (b) The Wasserstein distance.

FIGURE 2 | Geometric interpretation of the GW and Wasserstein
distances. (a) The GW distance compares two distributions supported
on different metric spaces, (X, d, ) and (¥, dy,). (b) The Wasserstein dis-
tance to compare two distributions supported on the same metric space,
(Z,d;), where c(x,y) = d;(x,y).
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ALGORITHM 3 | Computation of entropic-regularized GW.

1: Input: Similarity matrices C¥, C¥, probability mass vectors a, b, ground cost function £, regularization parameter A, number

of outer/inner iterations R, H
2: Initialize: P© — ab"
3:forr=0toR—-1do

4:  Compute the cost matrix C(P") = £(C*,CY) @ P"
5:  Compute the kernel matrix K = exp{ Cc(PV)/4}
6:  Update the coupling matrix P"* using Sinkhorn scaling in Algorithm 1

(2) Initialize: u©® < 1,,v® <1,

(b)forh=0to H — 1do

1 g @ KDy®, p® b @ KOTyt+D
end for

(© P  diag(u™)K"diag(viD)

7: end for

8: Output: GW, =

(C(P?),

PRy - AH(P®)

(C@y,=(L(c*.c¥)®P),

Zﬁ(C;}j, ) _—

Solving the GW formulation in Equation (8) leads to a non-
convex quadratic optimization problem. Similarly, to improve
tractability, the entropic-regularized variant is often considered:

GW,((c*

a),(C?,b) = , Elg(fa ‘b)(C(P),P) - AH(P), (10)

where 4 > 0 denotes the entropic regularization strength. This
objective can be minimized using an iterative scheme based
on projected gradient descent (Peyré et al. 2016; Solomon
et al. 2016), where each iteration updates the coupling by solving
a regularized OT problem. Specifically, the update at iteration
t + 1solves

pE+D = inf (C(P®),P) — AH(P),
Srginf (C(PT).P) = 4H(P) an

with C(P®) =L£(C¥ CY) @ P¥ serving as the cost matrix
based on the current iteration. This subproblem (11) coincides
with the entropic-regularized OT problem in Equation (5)
using C = C(P®), and can thus be efficiently solved via the
Sinkhorn algorithm. The complete procedure is summarized
in Algorithm 3. The computation complexity of Algorithm 3 is
(9(n4) per iteration in general scenarios, primarily due to the
repeated tensor-matrix operations. This high cost significantly
limits the scalability of GW in large-scale applications.

2.8 | Sparsification Techniques for OT Problems

Recall that to achieve a given approximation accuracy, the
Sinkhorn algorithm for OT typically incurs a computational
cost of order 5(n2). This cost arises from two main sources:
(1) each iteration requires matrix-vector multiplications with
complexity ©O(n?), and (2) the algorithm exhibits relatively
slow, near-linear convergence. These limitations persist in the
entropic-regularized variants of UOT and GW problems. In
particular, the GW optimization suffers from even higher com-
plexity, O(n“) per iteration, due to the costly construction of the
kernel matrix involving tensor-matrix contractions.

Numerous studies have proposed techniques to accelerate the
entropic-regularized versions, including partial updates of the se-
lected rows or columns of the transport plan (Genevay et al. 2016;
Altschuler et al. 2017; Alaya et al. 2019; Lin et al. 2022), first-
order acceleration schemes (Dvurechensky et al. 2018; Guminov
et al. 2021; Thibault et al. 2021; Lin et al. 2022), and the incorpo-
ration of structural priors on the coupling matrix or the ground
cost function (Xu et al. 2019; Chowdhury et al. 2021; Scetbon
et al. 2022). In this report, we focus on sparse subsampling meth-
ods, which aim to reduce the computational burden of entropic-
regularized OT and its variants (e.g., UOT and GW) by addressing
the key sources of inefficiency: high per-iteration cost and slow
convergence. A summary of these methods is provided below.

« Reducing the per-iteration computational cost. These
methods apply element-wise subsampling and construct
sparse approximations of the kernel matrix based on differ-
ent selection criteria (Gasteiger et al. 2021; Li, Yu, Li, and
Meng 2023; Li, Yu, Xu, and Meng 2023). Using such a surro-
gate for the original matrix, they achieve substantial savings
in runtime without severely compromising accuracy with
existing sparse matrix multiplication techniques (Drineas
et al. 2006; Mahoney 2011; Gupta and Sidford 2018).

« Accelerating convergence through second-order methods.
When viewed from the dual perspective, OT problems can
benefit from second-order optimization techniques (Brauer
et al. 2017; Tang et al. 2024; Tang and Qiu 2024; Wang and
Qiu 2025). In particular, sparsified Newton-type methods
approximate the Hessian and solve sparse linear systems to
compute search directions efficiently, thereby reducing the
total number of iterations required.

3 | Sparsification for Kernel Matrix

In this section, we focus on methods that sparsely subsample
the kernel matrix based on specific selection criteria, such as im-
portance sampling (Li, Yu, Li, and Meng 2023; Li, Yu, Xu, and
Meng 2023) and locality-sensitive hashing (Gasteiger et al. 2021).
These methods significantly reduce the matrix operations per
iteration, for instance, line 5 in Algorithms 1 and 2, and lines
4-6 in Algorithm 3. By constructing efficient approximations of
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the original kernel matrix, these methods enable near log-linear
computational complexity O(n) for problems (5) and (7), and near-
quadratic complexity O(n?**?) (6 > 0 is an arbitrary small num-
ber) for problem (10), while maintaining a fixed approximation
accuracy.

3.1 | Importance Sparse Sinkhorn Method

Li, Yu, Li, and Meng (2023) adopted the Poisson sam-
pling framework following the recent work of Braverman
et al. (2021) to construct a sparse sketch K that approximates
the original kernel matrix K. The central objective is to con-
struct an asymptotically unbiased approximation K with low
variance. To this end, Li, Yu, Li, and Meng (2023) leveraged
importance sampling (Liu and Liu 2001), which assigns higher
sampling probabilities to entries with larger magnitudes to
improve estimation efficiency and reduce variance when esti-
mating a summation. When the exact values are not available,
appropriate upper bounds can be used to approximate the
sampling probabilities (Kahn and Marshall 1953; Owen 2013;
Zhao and Zhang 2015).

Specifically, for the entropic-regularized OT problem in
Equation (5), a sparse approximation K of K is constructed via
Poisson sampling. In this approach, a small fraction of elements
from K are selected and rescaled, while the remaining entries
are set to zero. Given a subsampling budget s < n? and a set of
samphng probabilities {py} satisfying > Pi=1 the sparse
matrix K is defined as

(12)

z K;/p;; withprob. p; =min (1spy)
’ 0 otherwise,

where the rescaling ensures that K is an unbiased estimator

of K, and the expected number of non-zero entries satisfies

[E{ nnz (I?) } = Zi‘;P; <s.Li, Yu, Li, and Meng (2023) proposed

an importance sampling scheme to determine Dyt

aibj
pj=—+—, 1=Zij<n 13)

n
21‘J:1

This is motivated by three key observations. First, the OT plan
P shares the same sparsity structure as the kernel K due to
Equation (6). Second, the transport loss can be expressed as
(€,P}) = 3%,,Cy (P;)ij, so sparsifying K can be interpreted as
selecting terms from this summation. Third, from a variance
reduction perspective, the optimal sampling probabilities for es-
timating this sum should be proportional to C; (P;‘)U Suppose
that C;; is upper bounded by a constant ¢,, then due to the mar-
ginal constraints (P*) <min {a;b;}, there exits an upper

bound C; (P;)U < ¢p4/a;b;, which leads to the probability for-
mulation in Equation (13).
The corresponding procedure is provided in Algorithm 4,

denoted as Spar-Sink algorithm. Figure 3 provides a visual
comparison between the Spar-Sink and Sinkhorn algorithm.

ALGORITHM 4 | Spar-Sink algorithm for entropic-regularized
OT.

1: Input: Kernel matrix K, probability mass vectors a, b
2: Construct Spar-Sink according to (12) and (13)
3: Compute IN’: with K using Sinkhorn scaling in
Algorithm 1
(a) Initialize: t < 0,u©® < 1,,v® <1,
(b) repeat
t—t+1
u® —a @ KvYv® « b@ Ru®
until convergence
(c) Compute IN’: = diag(u®)K diag(v®)

4: Output: 6:F,1(a, b) = <Cj:> - /IH@:)

Specifically, Spar-Sink applies importance sampling to the ker-
nel matrlx yielding a sparse structure K and the resulting OT
plan P Both theoretical analysis and empirical evidence sug-
gest that the subsampling budget s should be at least of order
O(n) to ensure a reliable approximation.

Following the same line of thinking, the sampling probabilities
for the entropic-regularized UOT problem in Equation (7) are
similarly defined as follows:

(aiby) T K"
Dby = —r,
Zi,j(aibj) ZYHK 7

1<ij<n. 14)

The Spar-Sink algorithm for entropic-regularized UOT is ob-
tained by replacing the full kernel matrix in Algorithm 2 with
its sparse counterpart, computed using Equations (12) and (14).
The resulting estimator is denoted as 66—’1:13 2(a, b). For further
theoretical justification and algorithmic details, we refer the
reader to Li, Yu, Li, and Meng (2023).

Theoretical analysis demonstrates that, under mild regularized
conditions, the approximation error between the sparse estima-
torsand theirsexact counterparts remains sufficiently small, pro-
vided that the subsampling budget s and the sample size n satisfy
a suitable scaling relation. That is, OoT ,(a,b) and UoT ..;(@,b)
are statistically consistent w.r.t. the entropic-regularized OT
and UOT distance OT,(a, b) and UOT_ ,(a, b), respectively. The
proposed sparse algorithms reduce the per-iteration complexity
to O(s) = 5(n) while maintaining the same convergence rate in
terms of the number of iterations.

The underlying motivation of this sparsification strategy is rooted
in the fact that, when the regularization parameter 4 is small, the
OT plan tends to be sparse; see Peyré and Cuturi (2019) for a de-
tailed discussion. Importance-based sparsification effectively ex-
ploits this structure by constructing a sparse approximation of the
kernel matrix K, which mirrors the sparsity pattern of the trans-
port plan. It is worth noting that the sampling probabilities for
entropic-regularized OT, defined in Equation (13), depend solely
on the marginal distributions a; and b;, and are independent of
the corresponding cost values Cy;. From a different perspective,
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Dij

Sinkhorn
—)

K P}

Spar-Sink
—)

K P;

FIGURE 3 | Illustration of the Sinkhorn algorithm (left) and the Spar-Sink algorithm (right). In Spar-Sink, each entry of K is independently sam-
pled according to { p,.j} defined in Equation (12). The non-zero entries are highlighted in color.

Importance Compute #
sampling kernel matrix Sinkhorn
—) —) —)
I o
5() |
X Pl ]
7 174U pr+1
{Lij}ijes {Li.j}ijes K® PU*D
L
i
G(P™M)
FIGURE4 | Illustration of the Spar-GW method. The sparse matrlces{Ll - } . are sampled from {L, ]] } @hes respectively according to the prob-

abilities { pu} defined in Equation (13), yielding the sparse kernel and transport p'llan matrices & a

alternative sparsification scheme (Gasteiger et al. 2021) has also
been proposed that relies directly on the cost structure itself.

3.2 | Importance Sparsification for GW Distance

Following a similar line of reasoning, Li, Yu, Xu, and
Meng (2023) proposed a randomized sparsification method
called Spar-GW to calculate the entropic-regularized GW dis-
tance (10), using importance sampling principles. Instead of
directly sparsifying the kernel matrix, they construct a sparse
surrogate C(P™) to approximate the full cost matrix C(P®) in
the rth iteration. This strategy serves a dual purpose: it accel-
erates the Sinkhorn scaling steps and substantially reduces the
computational cost of evaluating the tensor-matrix contrac-
tions involved in C(P®).

To construct C(P" ), consider the definition of C(P") in
Equation (9). The idea is to build a collection of s sparse matri-

extracted from the 4th-order tensor £(C%,C7),
i)es
where S = {(i.j;) },_, is a set of index pairs sampled according
to a given sampling budget s. For each (i,j) € S, the matrix L;;.
contains only a small number of meaningful entries:

ces {ii_j_ }

- L Cf‘j,cy if (i,
Ly = <” ) (J) for (i,j)esS. (15)

otherwise

The final sparse cost approximation is then computed as
~ (1) ~ = (1) ..

C(P ) = YijeskijP;» where P, corresponds to the (i, j)th
entry of the transport matrix in the iteration r. Setting the zero en-
tries to oo in Equatlon (15) includes a sparse structure in the cor-

respondmg kernel K" Wthh is inherited by the transport plan

matrix B This sparsification scheme simultaneously reduces the
cost of the tensor-matrix computation and accelerates the Sinkhorn
scaling steps. The sparsification scheme S is constructed following
a similar importance sampling principle as in Equation (13), mo-
tivated by the same reasons discussed in Section 3.1. The overall
procedure isillustrated in Figure 4; see Li, Yu, Xu, and Meng (2023)
for further algorithmic and theoretical details.

Compared to other accelerated methods for computing the
entropic-regularized GW distance, such as scalable GW learn-
ing (Xu et al. 2019), low-rank GW (Scetbon et al. 2022), sliced
GW (Titouan, Flamary, et al. 2019), and linear-time GW
(Scetbon et al. 2022), which typically rely on restrictive as-
sumptions on the ground cost function £ (e.g., requiring a 2,
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loss or decomposability), on the coupling matrix P (e.g., low-
rank or tree-structured) or on the input data type (e.g., requir-
ing point clouds or graphs), this method achieves a substantial
computational speed up without imposing such constraints.
Specifically, it reduces the overall complexity from (9(n4) to
O(n? +s%) = O(n**%), where the subsampling budget satisfies
s = (9(111‘”s ) for any arbitrary small 6 > 0. This improvement im-
plies that only approximately n? elements need to be accessed
from a full 4D cost tensor containing n* elements, while still
maintaining a provable approximation guarantee. Moreover,
this importance sparsification mechanism can be further ap-
plied to other related problems, including approximation of the
original GW distance (8), the unbalanced GW distance (Séjourné
et al. 2021; Kawano and Mason 2021; Luo, Wang, et al. 2022),
and the fused GW distance (Titouan, Courty, et al. 2019; Vayer
et al. 2020).

3.3 | Sparse LSH and Locally Corrected
Nystrom Method

Unlike prior methods that focus solely on kernel matrix sparsi-
fication for entropic-regularized OT, Gasteiger et al. (2021) pro-
posed a two-stage approximation method, called locally corrected
Nystrom Sinkhorn (LCN-Sinkhorn) method. In the first stage,
rather than applying random sparsification, LCN-Sinkhorn
performs hard-thresholding based on locality-sensitive hash-
ing (LSH) (Shrivastava and Li 2014) to generate a sparse kernel
structure that preserves local interactions. In the second stage,
the method applies a local correction to the classical Nystrom
approximation, using the LSH-induced sparsity pattern to better
correct global geometry. By fusing both local (sparse) and global
(low-rank) approximations, LCN-Sinkhorn is able to effectively
model interactions between both nearby and distant points.

In the context of the entropic-regularized OT problem in
Equation (5), LCN-Sinkhorn focuses exclusively on interac-
tions between spatially proximate points based. In the first

stage, it approximates the full cost matrix C with a sparse ma-
trix C*?, where

Csp _ )

{C-- ifx; and y; are near
ij

oo otherwise.

This sparsified cost matrix then induces the corresponding ker-
nel matrix K* and transport plan P* following from their defi-
nitions, whose non-zero entries are concentrated almost entirely
around each point's nearest neighbors, effectively capturing only
the most relevant local interactions. To efficiently identify such
“near” point pairs, LCN-Sinkhorn employs LSH, a randomized
technique that maps similar points to the same hash bucket with
high probability, while ensuring dissimilar points are likely to
fall into different buckets. In this work, the authors specifically
consider cross-polytope LSH (Andoni et al. 2015) and k-means
LSH (Paulevé et al. 2010), offering a distinct balance between
locality preservation and computational efficiency.

The second stage leverages the locally sparse structure induced
by LSH to refine the global low-rank approximation obtained
via the Nystrom method (Williams and Seeger 2000; Musco
and Musco 2017). The Nystrom method approximates the pos-
itive semi-definite kernel matrix K by selecting a small subset
of I representative points (landmarks) and constructing a low-
rank factorization of the form K ~ Ky, = UA™'V, where A is
the kernel matrix evaluated on the landmarks, and U, V encode
cross-similarities between the input points and the landmarks.
The authors adopted k-means Nystrom (Oglic and Girtner 2017)
to choose the landmarks from {x;} U {y;}. The final approxi-
mation is then obtained by the correction of the Nystrom ap-
proximation by the exact values of LSH sparsification elements:
Kicon = Kngy — KX, + K, where KT contains the entries of
the Nystrom approximation Ky, corresponding to the non-
zero elements of K*P. Figure 5 provides a direct illustration of
LCN-Sinkhorn approximation K| -y w.r.t. the kernel matrix K.
The intermediate approximated kernel matrices at each step are

K Kicn

Sp sp
Kysy KNsy K

FIGURES5 | Schematic illustration of the LCN-Sinkhorn approximation. The matrix Ky, provides a global low-rank approximation of the kernel

matrix K, which is subsequently refined by incorporating the locally sparse correction K*P. The fusion of these two components yields the locally

corrected Nystrom approximation Ky cy.
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also shown. This approach improves upon prior work Nystrom-
Sinkhorn (Altschuler et al. 2019), which applied the Nystrom
approximation directly to the entropic-regularized OT problem
without local correction. Further technical details can be found
in Altschuler et al. (2019) and Gasteiger et al. (2021).

Gasteiger et al. (2021) demonstrates that the two stages (e.g.,
local LSH sparsification and global low rank approximation)
are complementary rather than competing. LSH-based spar-
sification may become ineffective in scenarios where pairwise
costs are very similar, the regularization is very strong, or
points have a large number of close neighbors. Conversely, the
Nystrom approximation can be unstable under weak regular-
ization or when the cost matrix exhibits high variability. By
adjusting the number of neighbors and landmarks, the method
enables a smooth interpolation between LSH-based sparsifi-
cation and Nystrom-Sinkhorn, providing a flexible trade-off
between local and global approximation. Combining both
strategies, the method offers great effectiveness and flexibility
across a wider range of problem settings. Moreover, while the
Spar-Sink method focuses on independent importance sam-
pling based on the marginal distributions (i.e., the pointwise
masses), LCN-Sinkhorn captures both local and global struc-
tural interactions in the data. It first achieves log-linear time
complexity and is stable enough to substitute full entropic-
regularized OT problem. Specifically, the overall computa-
tional complexity is @(nlog(n) + nl*), where [ is the number
of landmarks.

4 | Sparsification for Hessian Matrix

In this section, we explore the sparsified second-order meth-
ods based on Newton-type framework to accelerate the over-
all convergence of entropic-regularized OT problem. It is
well known that, under some smoothness assumptions on
the objective function, the Newton method enjoys a fast qua-
dratic local convergence rate, typically requiring significantly
fewer iterations than the Sinkhorn algorithm. However, for
entropic-regularized OT, each Newton iteration involves solv-
ing a dense linear system with a computational cost of (9(n3),
which undermines the efficiency advantage of Sinkhorn. To
address this challenge, recent works have proposed sparsified
second-order methods that leverage the dual formulation of
the entropic-regularized OT problem. We emphasize that the
previously discussed kernel-based methods are directly ap-
plied to the primal OT formulation by substituting the original
kernel matrix with a sparser one. In contrast, the Hessian-
based sparsification methods, typically framed within a
Newton-type framework, are primarily based on the dual
formulation of the entropic-regularized OT problem. These
methods aim to reduce the computational burden by spar-
sifying the Hessian matrix and further offer some valuable
insights into efficient Hessian approximation. Notable meth-
ods include hard-thresholding-based sparsification (Tang
et al. 2024), off-diagonal sparsification scheme that guaran-
tees strict approximation error control (Tang and Qiu 2024),

4.1 | Dual Formulation for
Entropic-Regularized OT

By introducing the dual variables @ € R", g € R", and applying
the minimax theorem, the entropic-regularized OT problem in
Equation (5) admits the following dual formulation (Peyré and
Cuturi 2019):

m%xF(a, P = max m}n (C,Py—AH(P)—a' (P1,—a)—p" (P"1,-b)

n 16
=maxa'a+p'b-4 > exp{ (@ +8-Cy)/ 4}, o
&, ij=1

where F(ea, p) is referred to as the Lyapunov potential func-
tion. Solving the original entropic-regularized formulation is
thus equivalent to maximizing this dual potential. Within this
framework, the matrix scaling steps in the Sinkhorn algorithm
can be interpreted as performing alternating maximization over
a and B, also known as applying the block coordinate ascent
(Sinkhorn 1964; Cuturi 2013; Yule 1912); a detailed algorithm
is provided in the following subsection. Let @* and * denote an
optimal solution to Equation (16). Then, the corresponding OT
plan P* can be recovered element-wise via

Pi’Jf:exp{ (al.*+ﬂj*—Cij>/A}. a7

Obviously, optimizing Equation (16) is equivalently to solving
the following problem:

12151 fla,B)= rgilgl —F(a, p)
(18)

n
=min 2 Y exp{(a;+p,-Cy)/1} —a’a—pb.
®P 3

It is worth noting that the solution to Equation (18), or equiv-
alently to (16), is not unique: if (a*, B*) is one solution, then
so is (a* + c1,, * — cl,,) for any constant c. This redundant
degree of freedom makes the Hessian matrix of f(a, §) singu-
lar, but one can simply remove it by forcinga™1, + 71, = 0 or
B, =0. In what follows, we omit this subtlety for the brevity
of presentation, and assume that the Hessian matrix is non-
singular. Importantly, Equation (18) defines a smooth, un-
constrained, and strictly convex optimization problem after
resolving the redundant degree of freedom in the variables
(a, f), which makes it amenable to a wide range of optimiza-
tion techniques (Brauer et al. 2017; Dvurechensky et al. 2018;
Guminov et al. 2021; Thibault et al. 2021; Lin et al. 2022). First-
order methods such as gradient descent, as well as second-
order approaches including Newton (Dembo et al. 1982; Li
et al. 2004) and quasi-Newton (Dennis and Moré 1977; Liu
and Nocedal 1989) methods, can be effectively applied to solve
it. The gradient and Hessian matrix of f(e, §) have the follow-
ing closed-form expressions:

P1l,—-a
Vf(a,ﬂ)=[ . ] H(a, p)=V*f(a, B)
P'1,-b

19
and hybrid techniques combining low-rank structure with _, [diag ( Pln) p (19)
top-entry selection for efficient Hessian approximation (Wang =4 pT dia ( PT1 ) :
and Qiu 2025). S
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In particular, the matrix P is a function of the dual variables
a and B, as defined in Equation (17). There has been extensive
research devoted to developing efficient sparsification strat-
egies for the Hessian matrix H(e, ), motivated by various
perspectives (Tang et al. 2024; Tang and Qiu 2024; Wang and
Qiu 2025).

4.2 | Hard-Thresholding Rule for Hessian Matrix

Tang et al. (2024) proposed a simple yet effective sparsification
strategy for the Hessian matrix based on a hard-thresholding
rule, aimed at accelerating the Newton method in the context of
Sinkhorn scaling. This approach enables efficient approximate
solutions to the Newton system HAz = — Vf by leveraging the
sparsity of the Hessian, significantly reducing the per-iteration
computational cost from the original O(n®) to O(n?). This
method, called the Sinkhorn-Newton-Sparse (SNS) algorithm,
maintains the fast convergence guarantees of the Newton frame-
work while substantially alleviating the computational burden.

The design of SNS is motivated by the observation that the Hessian
of the Lyapunov potential becomes approximately sparse when the
number of Sinkhorn iterations is sufficiently large and the regu-
larization parameter A is sufficiently small. More precisely, if the
number of iterations ¢ and the inverse regularization parameter
1/ A are large enough, then after ¢ Sinkhorn updates, the Hessian
matrix becomes (p,Z) = (3 / (2n),?)—sparse for some parame-
ter p, which depends on the problem size n, the iteration count ¢,
and A. Here, the ( p,ﬁ)—sparsity is defined in the sense that there
exists a matrix M with at most a proportion p of non-zero entries
(i.e., |M]||,/n? < p) such that ||[H —M||; < 7. Based on this anal-
ysis, one can safely approximate M with a relaxed target spar-
sity p = O(1 /n) > 3 /(2n) after a moderate number of Sinkhorn
iterations.

The SNS algorithm consists of two stages. In the first stage, it
performs N iterations of the Sinkhorn algorithm to update the

ALGORITHM 5 | Sinkhorn-Newton-Sparse (SNS) algorithm.

dual variables @ and B, providing a warm start and promoting
approximate sparsity in the Hessian matrix H. The number
of iterations N, can be either fixed in advance or determined
adaptively. In the second stage, SNS switches to the Newton
method for further updating the dual variables, while applying
a hard-thresholding rule to sparsify the Hessian. Specifically,
all elements in H smaller than a user-specified threshold 5
(equals to the| pn? | thlargest element in H) are set to zero. This
truncation preserves both the symmetry and diagonal domi-
nance of the original matrix, yielding a sparse approximation
H with a desired sparsity level p. Based on H,an approximate
Newton search direction Az is computed as a surrogate for the
exact solution Az to the Newton system HAz = — Vf. This
system can be efficiently solved using the conjugate gradient
method for linear systems (Golub and Van Loan 2013), lead-
ing to a per-iteration complexity of @(pn3) = O(n?). It is worth
noting that SNS differs from the method in Brauer et al. (2017)
that directly applies Newton's method to minimize the dual
objective in Equation (18), which incur a much higher cost of
(‘)(n3) per iteration. The complete procedure is summarized in
Algorithm 5.

4.3 | Off-Diagonal Sparsification
for Hessian Matrix

However, as pointed out by Tang and Qiu (2024), due to the spar-
sification strategy adopted in SNS, the approximated Hessian
matrix H may not be positive definite. As a result, there is no
strong guarantee of invertibility when solving the Newton sys-
tem using the conjugate gradient method. Furthermore, while
Tang et al. (2024) claimed that SNS achieves a faster convergence
rate, the justification is purely empirical; no rigorous theoretical
analysis is provided to support the convergence behavior of the
method. Acknowledging these limitations, Tang and Qiu (2024)
introduced a safe Newton-type algorithm, referred to as the
Safe and Sparse Newton method for Sinkhorn (SSNS), which
incorporates a novel sparsification scheme designed to have a

1: Input: Cost matrix C, probability mass vectors a, b, initial dual variables a,, ,, number of iterations N;, N,, threshold #

2: Initialize: t < 0, (a, B) < (@, Bo):
3: # Sinkhorn stage
4:whilet < N, do

T T _
5: Peexp{w

all +1,8"-C

}, a < a + A(log(a) — log(P1,))

6: P« exp{
7: t—t+1
8: end while
9: # Newton stage

10: z « (a, )

11: whilet < N, + N, do

-4 B B+ 2(1og(b) - log(PT1,))

12: Construct sparse approximation H by thresholding Hessian H with parameter

13: Compute Newton direction Az by solving HAz = — Vf using the conjugate gradient method
14: Perform line search to determine step size r

15: Z<Z2+r-Az

16: t<t+1
17: end while

T T _
18: Output: P* = exp{ al, +1.p -C }

A
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ALGORITHM 6 | Sparsifying the Hessian matrix in SSNS.

1: Input: Cost matrix C, probability mass vectors a, b, dual variables e, g, threshold y

ces s i all +1,7-C
2: Initialize: A « zero matrix in R™", P « exp{ %

3:forj=1,2, ... ,ndo

4: Identify the smallest-magnitude entries in P,; whose cumulative sum is below y but would exceed y if one more entry
were included; copy them to the corresponding positions in the zero vector A ; € R"

w

: end for
:fori=1,2, ... ,ndo

[*))

7: Identify the smallest-magnitude entries in A; whose cumulative sum is below y but would exceed y if one more entry

were included; set all remaining entries in A, to zero
8: end for

92P<P-A _
~ diag(P1,) P
10: Qutput: H « 47! T
P diag(P"1,)

Column sum < y

Row sum <y

_—
Column-wise Row-wise Construct
selection u selection approximation
—) 1 . —)
]
P A A P=P-A

FIGURE 6 | Illustration of the sparsification procedure for matrix P in SSNS. In the first step, the smallest entries in each column of P are selected

such that their cumulative sum remains below the threshold y, while the inclusion of the next entry would make it exceed y. These elements are stored

in the auxiliary matrix A. The same operation is then applied row-wise to A. The final sparse approximation is obtained as P=P-A

well-controlled approximation error and to ensure the positive
definiteness of the resulting Hessian approximation. Theoretical
analyses of both global and local convergence rates are also
presented.

The sparsification scheme in SSNS is constructed to satisfy two
essential criteria. First, the approximated matrix H should re-
main sufficiently close to the original Hessian H, with a tunable
approximation error y, so that essential information is retained.
Second, the positive definiteness of H should be preserved, as
the Newton system HAz = — Vf must remain solvable. To this
end, Tang and Qiu (2024) proposed an adaptive off-diagonal
sparsification algorithm tailored to these two goals, which re-
tains the diagonal blocks diag(P1,)and diag(P'1, ) unchanged,
while applying sparsification only to the off-diagonal compo-
nents P. Given a threshold y, SSNS proceeds by identifying the
smallest-magnitude entries in each column whose cumulative
sum is below y. In particular, it retains the largest set of entries
such that their cumulative sumis < y, while the inclusion of the
next smallest entry would make the sum strictly greater than y.
These identified entries are then removed, resulting in a spar-
sified version of the Hessian, followed by the same procedure
across each row. This off-diagonal truncation strategy always
avoids singularity in H regardless of sparsification parameter
during the computation of Newton search directions. Moreover,
the scheme guarantees that the residual error, measured in the
elementwise #,-norm, is bounded by the specified threshold y
(up to a scaling factor 4). That is, ”H—fIH1 <y/A. The com-
plete sparsification procedure is summarized in Algorithm 6

and illustrated in Figure 6. The left of SSNS is to choose moder-
ate value of step size r and threshold y; see more details in Tang
and Qiu (2024).

Theoretically, SSNS is demonstrated to achieve global conver-
gence to the unique optimal solution from any arbitrary ini-
tialization, without requiring a warm start via the Sinkhorn
algorithm. Furthermore, SSNS attains a quadratic local conver-
gence rate, matching that of the classical Newton method based
on the full (dense) Hessian matrix. The algorithm is robust with
respect to the choice of initial value, step sizes, sparsification
strength, and hyper-parameters. However, this work does not
provide a detailed analysis of the per-iteration computational
complexity of each Sinkhorn-Newton step, leaving open the
question of its precise computational guarantees.

4.4 | Low-Rank and Sparsification
for Hessian Matrix

The SSNS method faces a key limitation: The sparsity level
of the Hessian matrix after sparsification is not known in
advance, making it challenging to predict the actual com-
putational cost in practice. To address this issue, Wang and
Qiu (2025) conducted a more thorough investigation of the
effects of Hessian matrix sparsification, which motivates a
novel scheme that enables explicit control over the sparsity of
the Hessian approximation. Similar to the idea in Gasteiger
et al. (2021), Wang and Qiu (2025) investigate scenarios where
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the transport plan is dense, in which case existing sparsifi-
cation strategies tend to perform poorly. To overcome this,
they introduce an additional low-rank correction term to
the sparsified Hessian, aiming to recover the essential cur-
vature information lost during sparsification. This leads to
the Sparse-Plus-Low-Rank (SPLR) method, which combines
a hard-thresholded sparse approximation with carefully con-
structed low-rank components. The resulting quasi-Newton
algorithm achieves both fast convergence and improved com-
putational efficiency.

Wang and Qiu (2025) conducted a comprehensive analysis of the
eigenvalue structure of the sparsified Hessian matrix, offering new
theoretical insights into the effects of sparsification and establish-
ing a rigorous foundation for designing flexible sparsification strat-
egies. Within the off-diagonal sparsification framework adopted in
SSNS, the sparsification is applied exclusively to the off-diagonal
component P. A sparsified version of P, denoted by P s, is defined
over an index set S = { (ir.j;) }_, € {G, M}Yij=y- The sparsified ma-
trix and its associated Hessian approximation are given by

~T

~ {Pij i,)HES - _, [diag(P1,) P,
(PS) = R . ‘
ij 0 otherwise P, diag(P'1,)
Wang and Qiu (2025) establishes a theoretical result characteriz-
ing how the condition number of H ¢ evolves as the sparsity pat-
tern changes. Specifically, under a certain regularity condition,
they show that the increased sparsity level can lead to improved
numerical conditioning. Formally, let S; C S,, and suppose

~ \P
there exists a positive integer p > 0 such that (H 51) > 0. Then,

ALGORITHM 7 | Sparsifying the Hessian matrix in SPLR.

1: Input: Cost matrix C, probability mass vectors a, b, dual
variables a, f, proportion parameter 0 < p <1
al) +1,8"-C
et =}
3: Identify the index set S(p) corresponding to the | pn? |
largest entries in P
4: Construct S,(p) = S, U S(p)
diag(P1 P
5:Output: H ) « 47! NgT( ") S0

P,  diag(P'1,)

2: Compute P « exp{

the condition number of H s, is smaller than that of H s, In par-
ticular, setting S, as the full index set {(i, j)}’ifl.zl, and this result
implies that any sparsification pattern S, satisfying the regular-
ity condition preserves the positive definiteness of H and im-
proves its numerical stability. As a concrete example, they show

that the sparsity pattern S, = {(i,j) | i = 1orj = 1} satisfies the
~ \4
regularity condition with exponent p = 4, that is, (H s, ) > 0.

Building upon this insight, the sparsification scheme S,(p) in
SPLR consists of the structurally important index set S, and a
data-dependent component S(p), where S(p) contains the | pn? |
largest-magnitude entries in the matrix P. The full sparsification
procedure is described in Algorithm 7. Remark that the hard-
thresholding rule used in SNS selects the | pn? | th largest entry
of the Hessian matrix H as the cutoff threshold #, which leads to
similar sparsity pattern as H < in SPLR. Therefore, the primary
distinction between the SNS and SPLR sparsification schemes lies
in: (1) the off-diagonal sparsification pattern, since SNS directly
sparsifies the full Hessian matrix instead of the off-diagonal sub-
matrix P; (2) the inclusion of the index set S,, as illustrated in
Figure 7. This additional structure plays a critical role in guar-
anteeing the improved condition number after sparsification,
which further ensures the positive definiteness of the sparsified
Hessian, as justified by the theoretical analysis discussed earlier.

Considering the scenarios in which the Hessian matrix H is
relatively dense, the SPLR method augments the sparse approx-
imation H ¢ with additional low-rank terms to recover essen-
tial curvature information lost during sparsification. The final
Hessian approximation H takes the following form:

H=Hg+ (mss" +ntt") +hl, (20)

where mss' + ntt" is a low-rank correction of rank two, and hI
is a shift term added to improve the numerical stability during
matrix inversion. Under this construction, SPLR proceeds
within a quasi-Newton optimization framework, where the
dual variables are updated by computing the search direction
Az via solving the linear system HAz = — Vf. While the aug-
mentation in Equation (20) makes H dense again, its structure
allows for efficient matrix inversion using sparse and low-rank
arithmetic techniques. The parameters m, n, h,s, and t are de-
termined based on the classical secant condition from the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) update rule (Liu

| S

P P in SNS

Ps, () in SPLR

FIGURE7 | Comparison of the sparsification procedures for matrix P in SNS and SPLR. The SNS scheme retains only the entries with the largest

magnitudes, whereas SPLR additionally involves the index set S, to achieve better theoretical properties on the sparsified matrix, such as the im-

proved condition number.
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and Nocedal 1989; Cuturi and Peyré 2018). Detailed algorithmic
procedures and implementation considerations are further elab-
orated in Wang and Qiu (2025).

Convergence analysis shows that the SPLR algorithm enjoys a
global convergence guarantee, with a worst-case convergence
rate that is at least linear. In practice, empirical results indicate
that SPLR often exhibits super-linear-like convergence behav-
ior across a range of problem instances. Wang and Qiu (2025)
asserts that SPLR achieves rapid convergence with low com-
putational cost, making it a practical alternative to fully dense
second-order methods. The per-iteration complexity of SPLR is
(9( n? ) identical to that of SNS, as it preserves the same order of
non-zero elements in the sparsified Hessian matrix. Combined
with its global linear convergence rate, this leads to an overall
computational cost of @(n?log(1/¢)) for a given precision tol-
erance €.

5 | Other Related Works

Other related works such as partial-update OT and mini-batch
OT also randomly or selectively sample a few rows/columns
of the transport plan or data samples to accelerate OT compu-
tations, which also can be viewed as structured sparsification
strategies.

In particular, partial-update OT methods update only part
of the transport plan in each iteration according to certain
sampling or selection criteria. Representative examples in-
clude the greedy Sinkhorn (GREENKHORN, Altschuler
et al. 2017), stochastic OT (Genevay et al. 2016), screening
Sinkhorn (SCREENKHORN, Alaya et al. 2019) algorithms
and others. Specifically, the GREENKHORN algorithm per-
forms coordinate-wise updates, where only a single row or
column of the transport plan P is updated at each coordinate
descent iteration. Instead of alternating between full row
and column updates as in the classical Sinkhorn algorithm,
GREENKHORN greedily selects the row or column that most
violates the marginal constraints under a suitable divergence
measure, and updates only that part to reduce the violation
most efficiently. In contrast, Genevay et al. (2016) employed
the stochastic averaged gradient method, which uniformly
and randomly selects a data point (sample) from the empirical
distribution to update the average gradient with respect to the
dual variables in Equation (18). The SCREENKHORN method
adapts the static screening test from sparse supervised learn-
ing to the dual formulation (18) of entropic-regularized OT. By
imposing a threshold on the coordinates of the dual variables,
SCREENKHORN reduces the optimization scale of the orig-
inal OT problem, directing computational resources towards
the active variables.

Moreover, another relevant work is mini-batch OT and
widely used in several situations Damodaran et al. (2018),
Liutkus et al. (2019), and Tong et al. (2024). Mini-batch OT
methods substitute the original large-scale OT computation
in Equation (4)/(5) with more computationally efficient pro-
cedures on subsets of the full dataset. This is achieved by
splitting the problem into smaller sub-problems and aggre-
gating the results of these sub-problems to approximate the

original transport plan. The statistical properties of mini-
batch OT have been explored by Fatras et al. (2020), Bernton
et al. (2019), Sommerfeld et al. (2019), and Fatras, Zine,
et al. (2021). The subsampling process can involve either uni-
form or random sampling, with or without replacement, as
well as other sampling schemes under specific constraints, as
discussed in Fatras, Zine, et al. (2021). However, the issue of
misspecified mappings has been noted, wherein the transport
plan estimated from mini-batch OT may produce transport
mappings that deviate from the original solution of the OT
problem (Nguyen and Luu 2022). To address this issue, Fatras,
Séjourné, et al. (2021) proposed replacing the OT formula-
tion with the UOT formulation between empirical measures
derived from mini-batches, while Nguyen and Luu (2022)
suggested the use of partial OT for transportation between
mini-batches.

This review focuses on element-based sparsification strategies
for entropic-regularized OT problems, analyzing them from both
kernel-based and Hessian-based perspectives. These methods
leverage the inherent sparse structures of the kernel and Hessian
matrices, respectively, to improve computational efficiency. In
contrast, methods such as partial-update OT and mini-batch OT
reduce computational costs without explicitly considering the
matrix structure, instead relying on selective sampling of data
or coordinates based on specific criteria. Moreover, mini-batch
OT involves sampling multiple subsets (mini-batches) from the
original dataset and solving the corresponding sub-problems
over these subsets. Each sub-problem can be treated as a sparse
subsample, though the overall procedure merely splits the full
dataset into smaller chunks. The computational efficiency of
mini-batch OT is primarily derived from the parallelizability
of these sub-problems, rather than from a reduction in the total
computation across the entire procedure.

6 | Conclusion
6.1 | Summary

In this survey, we review recent sparsification techniques de-
veloped to improve the scalability of entropic-regularized OT
and its variants. These methods are categorized into two major
classes based on the formulation they operate on: (1) kernel-
based sparsification, which directly sparsifies the kernel matrix
in the primal formulation, and (2) Hessian-based sparsification,
which focuses on sparsifying the Hessian matrix in the dual
formulation. Kernel-based methods reduce the per-iteration
computational complexity while maintaining similar conver-
gence rates as the standard Sinkhorn algorithm. In contrast,
Hessian-based methods are designed to accelerate convergence
by leveraging Newton-type updates. They seek to alleviate the
cubic computational burden of dense Newton steps through the
sparsification analysis of the Hessian matrix. However, many of
these methods currently lack rigorous analysis regarding algo-
rithmic accuracy and computational complexity.

We provide a summary of the accelerated methods discussed
in our review in Table 1, which includes the category of each
method, its computational complexity per iteration, and
convergence rate. A “—” indicates that the method is not

Wiley Interdisciplinary Reviews: Computational Statistics, 2026

150f 21

85UB0|7 SUOWIWIOD BAIERID 3|qedl|dde 8y} Aq pauienob aie sjoe YO 88N JO S3|NJ 10} Aiq 17 8UIUO AB|IM UO (SUORIPUCD-PUR-SLLLBILI0D"AB | 1M ARG 1[oUU0//SHNY) SUORIPUOD PUe SWe L 83 88S *[9202/T0/yT] Uo Ariqiauliuo A|IM ‘LNNOJDY TV3-NON VYNIHO 40 ALISHIAINN NIWNIY AQ 9500 'S0IM/Z00T OT/10p/LLI00 A8 1M Ase.q1pu1|UO'SS1IM//STNY W0y papeojumod ‘T ‘9202 ‘89006E6T



TABLE 1 | Comparison of various accelerated Sinkhorn methods in terms of method category, per-iteration computational complexity, and

convergence rate.

Method Method category Computational complexity Convergence rate
Sinkhorn — Oo(n?) O(1/¢)
Spar-Sink Kernel-based O(n) (5(1 /€2)
Spar-GW Kernel-based O(n**?) —
LCN-Sinkhorn Kernel-based O(nlog(n) + nl?) 5(1 /)
SNS Hessian-based O(n?) —

SSNS Hessian-based — O(log(log(1/€)))
SPLR Hessian-based 0(nz) O(log(1/ €))
Stochastic OT Partial-update On) —
GREENKHORN Partial-update o(n?) 5(1 /€%)
SCREENKHORN Partial-update — —

discussed with respect to that particular aspect. The param-
eter € represents the precision tolerance, quantifying the dis-
tance between the original OT distance and the estimated OT
distance obtained through each acceleration method. From
the table, we observe that kernel-based methods maintain the
same convergence rate as the original Sinkhorn algorithm,
while reducing the computational complexity per iteration.
In contrast, Hessian-based methods significantly improve the
overall convergence rate of the original Sinkhorn algorithm,
though they do not alter the computational complexity of each
iteration. Thus, kernel-based and Hessian-based methods ac-
celerate the original Sinkhorn algorithm from complementary
perspectives.

However, existing sparsity-driven Sinkhorn methods also face
several limitations, which suggest potential directions for fur-
ther improvement. For instance, the Spar-Sink and Spar-GW
methods primarily rely on sparsity patterns derived from mar-
ginal distributions under the assumption that the elements of
the cost matrix are bounded by a constant, thereby neglecting
the valuable structural information encoded in the cost matrix
itself. Moreover, when applied to entropic-regularized UOT, the
sampling probabilities depend on the regularization parameters
(z, A), whereas for entropic-regularized OT, they are indepen-
dent of the regularization parameter. Hence, developing spar-
sification strategies that adapt to both the cost matrix and the
regularization parameters could enhance robustness and effi-
ciency. In addition, these methods introduce stochasticity in the
subsampling process, as Spar-Sink and Spar-GW perform im-
portance sampling on the kernel matrix only once. To mitigate
this randomness, it may be beneficial to apply the subsampling
procedure multiple times and aggregate the resulting sparse
kernel matrices, which could lead to more stable and reliable
approximations. Second, some sparsity-driven Sinkhorn meth-
ods rely on a large number of manually specified hyperparam-
eters. For example, the number of landmarks [ in the k-means
Nystrom method, the parameters involved in the AND-OR con-
struction of LSH within the LCN-Sinkhorn approximation, and
the shift parameter h as well as the density parameter p in the
SPLR method all require careful tuning. Developing adaptive

strategies that can dynamically adjust sparsity patterns accord-
ing to the cost structure or data geometry would alleviate the
burden of extensive manual hyperparameter tuning.

Furthermore, all of the sparsity-aware Sinkhorn methods dis-
cussed in this paper are highly versatile and applicable to a
wide range of learning tasks. Several sparsity-aware Sinkhorn
methods have already been successfully applied across various
domains. By replacing the original Sinkhorn distance computa-
tion with its sparsity-aware variants, these applications achieve
more efficient training while preserving accuracy. For exam-
ple, LCN-Sinkhorn has been used for unsupervised word em-
bedding alignment and for graph distance regression on graph
transport networks; Spar-GW can be directly applied to graph
distance regression problems; and Spar-Sink has been used for
tasks such as color transfer between images, echocardiogram
similarity analysis, and approximating the Sinkhorn diver-
gence during the training of auto-encoders in Sinkhorn-based
generative modeling. We are also eager to explore further ap-
plications of these methods, including Wasserstein barycenters,
multi-marginal OT, and Wasserstein gradient flows, where
replacing the original Sinkhorn or Wasserstein distance with
sparsity-aware alternatives may lead to significant computa-
tional improvements.

6.2 | Future Work

Future research can proceed along several promising directions.
Building upon the limitations and potential improvements dis-
cussed in the previous subsection, we further outline several
prospective avenues that may extend and enrich sparsification-
based OT methods.

First, extending these sparsification strategies to a wider range
of OT problems, including Wasserstein barycenters (Rabin
etal. 2011; Cuturi and Doucet 2014), multi-marginal OT (Haasler
et al. 2021; Beier et al. 2023; Hu et al. 2025), and Wasserstein gra-
dient flows (Peyré 2015; Mokrov et al. 2021), could significantly
broaden their applicability.
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Second, existing acceleration techniques primarily focus on the
entropic-regularized OT problem. However, quadratically regu-
larized OT (Blondel et al. 2018; Lorenz et al. 2021) has gained in-
creasing importance in modern applications (Daniels et al. 2021;
Xu and Cheng 2023) due to its ability to produce sparse transport
plans, which are often more desirable than the dense transport
plans obtained from entropic-regularized OT. The lack of sparsity
in the latter can be problematic, particularly when the transport
plan itself is of interest. Many studies have introduced quadratic
regularization into various OT problems, including classical OT
(Blondel et al. 2018), graph OT (Essid and Solomon 2018), UOT
(Nguyen et al. 2023), and partial OT (Tran et al. 2025). Migrating
existing acceleration techniques, such as sparsification strate-
gies and optimization methods (e.g., the Nystrom method and
Nesterov's method), to quadratically regularized OT is an exciting
avenue for future work. Analyzing the properties of quadratically
regularized OT, such as sparsity or low-rank structures in the ma-
trices involved in the optimization process, and exploring the fea-
sibility of applying acceleration techniques to this domain remain
a promising research direction.

Third, combining different sparsification heuristics may yield
further improvements. For example, Spar-Sink focuses mainly
on sparsity patterns derived from marginal distributions, while
LCN-Sinkhorn emphasizes spatial locality. Integrating both
perspectives or enriching them with additional structural priors,
such as low-rank approximations or graph-based constraints,
may lead to more effective and generalizable sparsification
frameworks. For example, similar to the LCN method, which
first sparsifies the kernel matrix using hard-thresholding based
on LSH and subsequently locally corrects the sparse kernel
matrix using the Nystrom method to capture local interactions
more effectively, we are motivated to apply a similar approach.
Specifically, we can propose locally correcting the sparse kernel
or Hessian matrix generated by a specific sparsification strat-
egy using a low-rank approximation method. Alternatively,
one could first perform a low-rank decomposition of the kernel
matrix and then apply sparse sampling on the decomposed low-
rank matrix.

Finally, closer integration with application domains (e.g., com-
putational biology, graphics) and design of algorithms that
account for task-specific constraints will help translate sparsifi-
cation advances into practical impact.
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