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ABSTRACT
Optimal transport (OT) methods and their variants have become increasingly prominent tools in computer science and machine 
learning, owing to their appealing geometric properties and powerful potency. Despite broad applications, OT methods suffer 
from prohibitively high computational cost, limiting the scalability even for moderately sized datasets. To address this challenge, 
regularized OT formulations and the corresponding Sinkhorn algorithm have emerged as standard alternatives to improve effi-
ciency. However, these methods still face the high per-iteration cost and slow convergence rate drawbacks. Sparsification tech-
niques have emerged as an effective and practically valuable class of methods for mitigating these computational bottlenecks 
by leveraging inherent or induced sparsity in the matrices involved in OT optimization. Broadly, sparsification methods can be 
grouped into two main categories: (1) kernel-based sparsification building on the primal regularized OT formulation, and (2) 
Hessian-based sparsification, derived from the dual formulation. In this survey, we provide an extensive and comprehensive 
review of sparsification techniques developed for OT problems, highlighting their underlying motivations, algorithmic distinc-
tions, and theoretical guarantees.
This article is categorized under:
Statistical and Graphical Methods of Data Analysis > Sampling
Algorithms and Computational Methods > Computational Complexity

1   |   Introduction

In the 18th century, the French mathematician Gaspard 
Monge formulated a fundamental transportation problem in-
volving a pile of sand (Monge  1781): given a distribution of 
sand (referred to as the déblai) and a collection of holes or pits 
(the remblai) to be filled, the goal was to move the sand in such 
a way that the piles exactly fill the holes. There are many pos-
sible ways to transport the sand, each associated with a global 

transportation cost, which aggregates the local effort to move 
each individual grain from its original location to a destina-
tion. The central question is how to find an efficient transport 
plan that minimizes the total cost of moving the sand from 
the source to the target. To generalize the problem, both the 
sand and the holes can be modeled as mass distributions over 
a spatial domain, mathematically represented by two proba-
bility measures, denoted by � and �, respectively. The central 
objective is to determine the most efficient way to transport � 
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to �. This leads to the optimal transport (OT) problem, a pow-
erful and widely used framework for comparing probability 
distributions (Villani 2008).

More specifically, the OT problem can be interpreted from a 
resource allocation perspective (Peyré and Cuturi 2019; Zhang 
et al. 2021; Zhang, Ma, et al. 2023). Consider a scenario in which 
an operator manages n warehouses and m factories. Each fac-
tory has a specified demand for raw materials stored in the 
warehouses. It is assumed that the total supply exactly matches 
the total demand, and that all available resources must be trans-
ported from the warehouses to fulfill the factories' needs. The 
objective of the OT problem in this context is to determine a 
transportation plan that allocates materials from warehouses to 
factories in a way that minimizes the total logistic cost, while 
fully satisfying the demand at each factory. The cost is typically 
modeled as the total amount of material transported multiplied 
by the distance over which it is shipped, aggregated over all 
warehouse-factory pairs.

Due to the natural formulation across diverse contexts and the 
ability to capture the underlying geometry of data, OT methods 
have shown remarkable adaptability in modern data science ap-
plications. Numerous tasks in statistics and machine learning 
can be fundamentally reduced to comparing probability distri-
butions. For example, generative adversarial networks (GANs) 
seek to align the distribution of generated samples with that of 
real data (Goodfellow et al. 2014; Arjovsky et al. 2017; Gulrajani 
et al. 2017). In semantic matching, word embeddings can be in-
terpreted as distributions, and OT provides a means to quantify 
their structural divergence (Werner and Laber 2020; Yurochkin 
et al. 2019). In domain adaptation, the goal is to adapt a model 
trained on a source domain to perform effectively on a differ-
ent target domain, often requiring alignment between their 
respective data distributions (Courty et al. 2016; Muzellec and 
Cuturi 2019). Thus, OT methods have found widespread applica-
tions across computer science and machine learning, including 
computer vision (e.g., image registration, style transfer) (Petric 
Maretic et al. 2019; Wang et al. 2021; Luo, Xu, and Carin 2022; 
Vincent-Cuaz et  al.  2022; Wang et  al.  2023, 2025), generative 
modeling (such as GANs and variational models) (Tolstikhin 
et al. 2018; Deshpande et al. 2019; Lei et al. 2019), natural lan-
guage processing (e.g., word embedding alignment, semantic 
similarity) (Xu et al. 2018; Grave et al. 2019; Wang et al. 2020; 
Yu et  al.  2022; Fang et  al.  2025), domain adaptation (Courty 
et  al.  2014; Flamary et  al.  2016), and knowledge distillation 
(Nguyen and Luu 2022; Yang et al. 2023). In statistics, OT has 
been widely used for tasks such as two-sample testing (Ramdas 

et  al.  2017), Wasserstein barycenter computation (Cuturi and 
Doucet 2014; Claici et al. 2018; Xu et al. 2021), estimation and sta-
tistical inference (Blanchet et al. 2021; Tameling and Munk 2018; 
Meng et al. 2020; Zhang, Meng, et al. 2023; Kroshnin et al. 2021; 
Zemel and Panaretos 2019; Klatt et al. 2020), and empirical pro-
cess theory (Fournier and Guillin 2015; Weed and Bach 2019; 
Horowitz and Karandikar  1994; Si et  al.  2020). In addition to 
these established areas, OT has also shown promise in emerg-
ing fields such as algorithmic fairness (Zehlike et al. 2020) and 
distributional clustering (Farnia et al. 2022; Li et al. 2024), fur-
ther demonstrating its versatility in handling distributional and 
geometric tasks.

Beyond the original formulation of OT, several mathematical 
extensions have been developed, such as the unbalanced OT 
(UOT, Chizat et  al.  2018; Pham et  al.  2020) and the Gromov–
Wasserstein (GW) distance (Mémoli  2011). The UOT problem 
relaxes the strict mass conservation constraint by allowing the 
total mass to differ between the source and target distributions. 
In this setting, the goal is to seek an optimal transport plan be-
tween two measures that may not exactly match the original 
distributions � and �, but are instead close to them in some diver-
gence sense. This generalization enables UOT to be well suited 
for real-world scenarios where exact mass preservation does not 
hold, such as in the presence of noise, corrupted data, or outliers. 
Another important extension of the OT framework is the GW 
distance, which enables the comparison of the internal geomet-
ric structures of two probability measures, even when they are 
supported on different metric spaces. Unlike the classical OT 
formulation, which seeks to align individual points across two 
distributions defined on a common ground space, the GW dis-
tance aligns the pairwise distance relationships within each dis-
tribution. In other words, GW compares how well the relational 
structure (e.g., distance matrices) of one space can be mapped 
onto that of another, rather than matching points based on 
their absolute positions. Figure 1 presents schematic examples 
of horse registration under different OT formulations, with the 
horse data taken from Sumner and Popović (2004). In Figure 1a, 
the classical OT formulation aligns two 3D horse point clouds 
by seeking the most efficient transport plan from one running 
horse to another exhibiting a different motion style but pre-
serving an overall similar structure. Figure  1b illustrates the 
UOT formulation, which applies to a more challenging scenario 
where the masses differ between two distributions, for example, 
transporting a full horse point cloud to a partial horse torso. In 
contrast to OT and UOT, the GW formulation in Figure 1c en-
ables registration across different metric spaces, such as map-
ping a horse point cloud to a 3D mesh model.

FIGURE 1    |    Comparison of different OT formulations. (a) The classical OT aligns two 3D horse point clouds that share a similar overall structure, 
transporting a running horse to another of a different motion style. (b) The UOT formulation accommodates unequal total masses, enabling the reg-
istration of a full horse point cloud to a partial torso. (c) The GW formulation establishes correspondences across different metric spaces, exemplified 
by mapping a horse point cloud to a 3D mesh model.

(a) OT (b) UOT (c) GW
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Although OT has found widespread applications across various 
domains, its original formulation as a linear program incurs a 
prohibitively high computational cost (Rubner et al. 1997; Pele 
and Werman 2009), typically with super-cubic complexity in the 
number of data points. To alleviate this issue, Cuturi (2013) intro-
duced a regularized OT formulation by adding an entropic pen-
alty to the objective. This modification transforms the original 
problem into an optimization task that can be solved efficiently 
via iterative matrix–vector operations, reducing computational 
burden from super-cubic to approximately quadratic. Due to its 
favorable properties (such as parallelizability, smoothness, and 
differentiability), the resulting Sinkhorn algorithm has become 
a standard and widely adopted method for solving OT problems, 
particularly in large-scale and differentiable learning settings 
(Montavon et al. 2016; Eisenberger et al. 2022). Moreover, sim-
ilar regularization techniques have also been extended to the 
computation of the GW distance. The original GW formulation 
poses significantly greater computational challenges compared 
to the classical OT. It has higher computational complexity in-
volving fourth-order tensor product and is known to be NP-hard 
as it corresponds to solving a nonconvex, non-smooth optimiza-
tion problem (Peyré et al. 2016; Solomon et al. 2016). To address 
this issue, various forms of regularization (such as the Bregman 
proximal term or entropic regularizer) have been introduced 
into the GW objective (Peyré et al. 2016; Xu et al. 2019). These 
relaxations enable the use of Sinkhorn-like iterative algorithms, 
which significantly improve computational efficiency and make 
the problem more tractable in large-scale settings.

Despite the computational improvements brought about by en-
tropic regularization, the Sinkhorn algorithm still suffers from 
several practical limitations. For example, each iteration of the 
Sinkhorn algorithm requires dense matrix operations with qua-
dratic memory and time complexity, and the algorithm typically 
exhibits sublinear convergence in common settings (Altschuler 
et al. 2017; Peyré and Cuturi 2019; Carlier 2022). Sparsification 
techniques have emerged as an effective and practically import-
ant class of methods to alleviate these bottlenecks. Taking advan-
tage of the inherent or induced sparsity in the matrices involved 
in OT optimization, these methods aim to reduce computational 
overhead while preserving the accuracy of the solution. In the 
past few years, substantial efforts have been devoted to develop-
ing sparsity-aware variants of Sinkhorn-based algorithms to en-
hance their scalability (Lin et al. 2022; Li, Yu, Li, and Meng 2023; 
Gasteiger et al. 2021; Nguyen et al. 2023; Tang et al. 2024; Tang 
and Qiu 2024; Wang and Qiu 2025). In this survey, we provide a 
comprehensive review of such techniques, with a focus on how 
sparsification contributes to (i) reducing per-iteration computa-
tional cost and (ii) accelerating convergence. We will introduce 
two representative kinds of sparsification-based OT methods, 
detailing their underlying motivations, algorithmic distinctions, 
and practical computational complexities.

The remainder of this article is organized as follows: In 
Section 2, we provide a brief overview of the OT problem and 
several important variants of its original formulation. We also 
outline the role of sparsification in optimizing Sinkhorn-based 
algorithms from two perspectives: reducing per-iteration com-
putational cost and improving convergence behavior. Sections 3 
and 4 present detailed discussions of these two aspects, respec-
tively. Section  5 introduces additional related works, such as 

partial-update OT and mini-batch OT, and distinguishes among 
these methods. Finally, Section 6 concludes the survey and high-
lights potential future directions.

2   |   Problem Formulation

In this section, we begin by providing a mathematical over-
view of the classical OT problem, including both the Monge 
formulation and the Kantorovich formulation. We then intro-
duce several widely used extensions of OT and present their 
corresponding mathematical formulations in detail, including 
entropic-regularized OT, unbalanced OT, and the GW distance. 
Finally, we discuss the computational bottlenecks that arise 
in large-scale OT problems and introduce the motivation for 
sparsification-based methods. We conclude this section with a 
review of recent advances in sparsification techniques that have 
been proposed to improve the scalability and efficiency of OT 
solvers.

2.1   |   Notations

Throughout this survey, we adopt the following notational 
conventions. We adopt the standard convention of using up-
percase boldface letters for matrices, lowercase boldface let-
ters for vectors, and regular font for scalars. We denote by 
1n ∈ ℝ

n the vector of all ones. The exponential and division 
operators in expression exp{ − A∕�} are applied element-
wise, with a scalar 𝜆 > 0. For two probability mass vectors 
a,b ∈ ℝ

n
+
, the Kullback–Leibler divergence between them 

is defined as KL(a‖b) =∑n
i=1 ai log

�
ai ∕bi

�
− ai + bi with 

the standard convention that 0 log(0) = 0. The division op-
erator ⊘ and multiplication operator ⊙ between two vectors 
are also applied element-wise. For matrices A and B of the 
same dimension, the Frobenius inner product is denoted by 
⟨A,B⟩ = ∑

i,jAijBij. Given a coupling matrix P ∈ ℝ
n×n
+

, we denote 

H(P) =
∑n

i,j=1 Pij
�
1 − logPij

�
 as the Shannon entropy of P, and 

we adopt the standard convention that 0 log(1∕0) = 0. We use 
‖ ⋅ ‖ to represent the Euclidean norm for vectors and the oper-
ator norm for matrices. The �1-norm and �0-norm are denote 
by ‖⋅‖1 and ‖⋅‖0, respectively, and may be applied to both vec-
tors and matrices. The general �p-norm for vectors is denoted 
by ‖⋅‖p. Finally, for two non-negative sequences 

{
xn
}
 and 

{
yn
}
, 

we write xn = ̃(yn) if there exist constants c, c′ > 0 such that 
xn ≤ c�yn(log(n))

c for all sufficiently large n.

2.2   |   The Monge Formulation

Consider the illustrative example presented in Section  1: the 
task of transporting sand into a collection of holes with minimal 
total effort can be mathematically formulated as an OT prob-
lem, where the goal is to find the most efficient way to move a 
probability measure � onto another probability measure �. The 
solution that minimizes the total transport cost is called the OT 
map if a deterministic mapping is sought (as in the Monge for-
mulation). Mathematically, let � and � be two probability mea-
sures supported on ℝd. For a measurable function T:ℝd

→ ℝ
d, 

the push-forward of � by T, denoted by T#�, is defined by
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Intuitively, T describes how individual points in the domain 
are transported, and T# is the induced transformation of �. Let 
Π1(�, �) =

{
T:ℝd

→ ℝ
d|T ismeasurable andT#� = �

}
 denote 

the set of all plausible transport maps that push � forward �. The 
Monge formulation of OT problem is then defined as

where c( ⋅ , ⋅ ):ℝd ×ℝ
d
→ ℝ is the ground cost function. A widely 

used choice is the pth power of the Euclidean distance, that is, 
c(x, y) = ‖x−y‖p with p ≥ 1. The solution of OT1(�, �) is the OT 
map, denoted by T⋆:ℝd

→ ℝ
d.

However, the Monge formulation is not always well defined, as 
the set of admissible transport maps may be empty; that is, there 
may exist no measurable map T such that T#� = �. A classical 
counterexample arises when � is a Dirac measure concentrated 
at a single point, while � is a continuous probability measure or 
places mass on multiple disjoint points. In such cases, no deter-
ministic map can push forward all mass from a single location 
to a distribution that spreads mass across multiple target points. 
This limitation stems from the fact that the Monge formula-
tion does not allow mass splitting, only restricting transport to 
pointwise (non-branching) mappings.

2.3   |   The Kantorovich Formulation

The Kantorovich formulation (Kantorovich  1942) addressed 
this limitation by allowing mass splitting from a source point 
to multiple target locations, relaxing the deterministic map to 
a probabilistic transportation. Specifically, it replaces the trans-
port map T with a joint probability measure � on the product 
space ℝd ×ℝ

d, referred to as a coupling between � and �. In this 
more general setting, the mass conservation condition is relaxed 
to marginal distribution constraints on the coupling �, which 
must satisfy:

The Kantorovich formulation of the OT problem is then written 
as follows:

where c( ⋅ , ⋅ ) is the cost function defined earlier. The solution 
𝜋⋆ that achieves the infimum in OT2(�, �) is called the OT plan.

For the discrete case, the probability measures � and � are ap-
proximated by two empirical distributions supported on the 
bound subsets 

{
x i
}n
i=1

 and 
{
yj
}m
j=1

⊂ ℝ
d, respectively. These 

distributions are associated with the probability mass vectors 
a =

(
a1, … , an

)⊤
∈ ℝ

n and b =
(
b1, … , bm

)⊤
∈ ℝ

m, where 

the entries satisfy ai ≥ 0, bj ≥ 0, and 
∑n

i=1 ai =
∑m

j=1 bj = 1. Let 
C =

(
Cij

)
∈ ℝ

n×m
+

 denote the cost matrix, where each entry is 
given by Cij = c

(
x i, yj

)
. A common choice for the cost function 

is the squared Euclidean distance, that is, Cij =
‖‖‖x i−yj

‖‖‖
2
. Let 

P =
(
Pij

)
∈ ℝ

n×m
+

 represent a transport plan, where Pij denotes 
the amount of mass to be transported from x j to yj. Under the 
marginal constraints ensuring mass conservation, the set of fea-
sible transport plans takes the form

Under this formulation, the Kantorovich problem defined in 
Equation (2) reduces to the following finite-dimensional linear 
program:

where the corresponding OT plan P⋆ is the solution that attains 
the minimum of OT2(a,b).

Building upon the resource allocation perspective introduced in 
Section 1, we consider a scenario involving n warehouses located at 
positions 

{
x i
}n
i=1

, each storing an amount ai of raw materials, and 
m factories located at positions 

{
yj
}m
j=1

, each requiring a demand bj 

of raw materials. The total supply and demand are assumed to be 
balanced, that is, 

∑n
i=1 ai =

∑m
j=1 bj = 1, and no material is lost or 

created during transportation. A transport plan Pij represents the 
amount of material transported from warehouse x i to factory yj, 
and the associated transport cost Cij typically reflects the distance 
between them, often modeled as the squared Euclidean distance, 
that is, Cij =

‖‖‖x i−yj
‖‖‖
2
. Under this setting, the feasible transport 

plans are subject to marginal constraints ensuring that the mass 
dispatched from each warehouse and received by each factory 
matches the prescribed supply and demand, respectively (as de-
fined in Equation 3). The total cost incurred by the operator is cal-
culated as the sum of transported mass multiplied by the respective 
cost, aggregated over all warehouse-factory pairs. Consequently, 
the OT problem in this context amounts to solving the linear pro-
gram formalized in Equation (4), to determine an OT plan P⋆.

Compared to the Monge formulation, the Kantorovich formu-
lation offers several advantages. First, the Kantorovich formu-
lation guarantees the existence of a feasible solution. The set of 
admissible couplings Π(a,b), which consists of all joint distribu-
tions with marginals a and b, is always non-empty, ensuring the 
existence of a solution to Equation (4). Second, the Kantorovich 
problem can be cast as a linear program, specifically a form of 
the classical minimum-cost network flow problem. This con-
vex structure allows for the use of efficient and well-established 
linear programming techniques and solvers. Third, the 
Kantorovich formulation is inherently more flexible and appli-
cable in practical scenarios due to its allowance for mass split-
ting. This is especially relevant in applications such as resource 
allocation, where, for example, a single warehouse may need to 
supply materials to multiple factories. In addition, Brenier's the-
orem (Brenier 1991) establishes a fundamental connection be-
tween the two formulations. Specifically, when the cost function 
is given by c(x, y) = ‖x−y‖2, and at least one of the measures � 

T#𝜇(Ω) = 𝜇
(
T−1(Ω)

)
, ∀Borel setsΩ ⊂ ℝ

d.

(1)

OT1(𝜇, 𝜈) = inf
T ∈Π1(𝜇,𝜈)∫ c(x,T(x))d𝜇(x), T⋆ = arg inf

T ∈Π1(𝜇,𝜈)
∫ c(x,T(x))d𝜇(x),

Π(𝜇, 𝜈)=
{
𝜋∈(

ℝ
d×ℝ

d
)|𝜋(A×ℝ

d
)
=𝜇(A),𝜋

(
ℝ
d×B

)

= 𝜈(B),∀Borel setsA,B⊂ℝ
d
}
.

(2)

OT2(𝜇, 𝜈) = inf
𝜋 ∈Π(𝜇,𝜈)∫ c(x, y)d𝜋(x, y), 𝜋⋆ = arg inf

𝜋 ∈Π(𝜇,𝜈)∫ c(x, y)d𝜋(x, y),

(3)Π(a,b) =
{
P ∈ ℝ

n×m
+

|P1m = a,P⊤1n = b
}
.

(4)OT2(a,b) = inf
P ∈Π(a,b)

⟨C,P⟩, P⋆ = arg inf
P ∈Π(a,b)

⟨C,P⟩,
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or � has a density, then the OT plan in the Kantorovich formu-
lation corresponds to a deterministic transport map, as required 
by the Monge formulation. Throughout this survey, we focus ex-
clusively on the Kantorovich formulation.

2.4   |   Wasserstein Distance

An important feature of OT is its ability to define a meaning-
ful distance between probability measures. Specifically, when 
the cost function c(x, y) is a ground metric on ℝd, then the OT 
problem gives rise to the Wasserstein distance, which quanti-
fies the dissimilarity between probability distributions in a 
geometry-aware manner. Let a and b be two discrete probability 
vectors. When the cost matrix is chosen as the pth power of the 
Euclidean distance, that is, Cij =

‖‖‖x i−yj
‖‖‖
p
, p ≥ 1, the associated 

p-Wasserstein distance in Equation (4) is defined as

Intuitively, the Wasserstein distance captures the minimal total 
“transport cost” required to morph one distribution into an-
other, effectively lifting the ground metric on the sample space 
to a metric on the space of probability measures. This enables 
a geometry-aware comparison of distributions, even when their 
supports are disjoint. The Wasserstein distance possesses sev-
eral desirable properties that distinguish it from traditional 
divergence measures such as the Kullback–Leibler divergence, 
Jensen–Shannon divergence, or total variation distance. In par-
ticular, it provides a meaningful notion of dissimilarity even 
when the distributions have mismatched supports, explicitly 
capturing the spatial displacement between probability masses. 
Moreover, its strong geometric interpretability makes it espe-
cially suited for tasks that require an understanding of the struc-
tural relationship between distributions. Thus, the Wasserstein 
distance has found exceptionally broad application in mod-
ern machine learning, notably in deep generative modeling 
(Tolstikhin et al. 2018; Deshpande et al. 2019; Lei et al. 2019), 
and in the analysis and processing of natural language and vi-
sual data (Rolet et al. 2016; Balikas et al. 2018; Xu et al. 2018).

2.5   |   Entropic-Regularized OT

Without loss of generality, we assume that m and n are of the 
same magnitude, that is, set m = n throughout the remain-
der of this survey unless otherwise specified. The calculation 
of the original OT problem, as formulated in Equation  (4), in-
volves solving a large-scale linear programming problem. The 
corresponding computational complexity is typically at the 
order of (n3 log(n)) (Pele and Werman 2009), which becomes 
prohibitive even for moderately sized datasets. This issue was 
bypassed by Cuturi (2013), which proposed approximating the 
solution by adding an entropic penalty term to the objective 
function, resulting in the entropic-regularized OT problem. 
This work demonstrated the computational advantages of the 
entropic formulation and its compatibility with loss functions 
in modern machine learning pipelines, including support for 

parallel computation and automatic differentiation. In prac-
tice, the entropic-regularized OT problem corresponding to 
Equation (4) is defined as

where 𝜆 > 0 is the regularization parameter.

The entropic-regularized OT problem can be efficiently ap-
proximated using an iterative matrix scaling procedure known 
as the Sinkhorn algorithm (Sinkhorn  1964; Sinkhorn and 
Knopp 1967). Given the kernel matrix K = exp{ − C ∕�}, it can 
be shown (Cuturi 2013; Peyré and Cuturi 2019) that the OT plan 
P⋆
𝜆
 corresponding to Equation (5) can be expressed as a projec-

tion of K onto the set of couplings Π(a,b). Specifically, it takes 
the form:

where u⋆ and v⋆ are scaling vectors that can be computed itera-
tively. Sinkhorn algorithm is summarized in Algorithm 1.

It can be noted that Sinkhorn algorithm only involves matrix–
vector multiplication operations, whose computation is par-
allel and GPU friendly, effectively improving the efficiency. 
Franklin and Lorenz (1989) established the linear convergence 
of Sinkhorn's iterations with respect to (w.r.t.) the Hilbert pro-
jective metric by demonstrating that each iteration constitutes 
a contraction mapping under this metric. However, in practical 
applications, the Sinkhorn algorithm typically incurs a near-
linear convergence with a computational cost of order ̃(n2), 
where ̃( ⋅ ) suppresses logarithmic factors. More precisely, the 
complexity is (Ln2), where L denotes the total number of iter-
ations. This iteration count L depends on the convergence ac-
curacy and the total mass of the kernel matrix, which is often 
bounded above by a quantity smaller than log(n). We refer the 
reader to Altschuler et al. (2017), Peyré and Cuturi (2019), and 
Carlier  (2022) for a detailed review of the convergence of the 
Sinkhorn algorithm.

2.6   |   Unbalanced OT

Classical OT relies on the restrictive assumption that the total 
mass of the two marginal measures must be equal. This limitation 
can be problematic in applications where one needs to handle ar-
bitrary (unnormalized) positive measures or allow for partial mass 
transport. Unbalanced OT (UOT) addresses this issue by relaxing 
the hard marginal constraints into soft ones, introducing a penalty 

Wp(a,b) =

�
inf

P∈Π(a,b)
⟨C,P⟩

� 1

p

.

(5)OT�(a,b) = inf
P∈Π(a,b)

⟨C,P⟩ − �H(P),

(6)P⋆
𝜆
= diag

(
u⋆

)
K diag

(
v⋆

)
,

ALGORITHM 1    |    Computation of entropic-regularized OT.

1: Input: Kernel matrix K, probability mass vectors a, b
2: Initialize: t ← 0, v(0) ← 1n
3: repeat
4:  t ← t + 1
5:  u(t)

← a⊘ Kv(t−1), v(t) ← b⊘ K⊤u(t)

6: until convergence
7: Output: P⋆

𝜆
= diag

(
u(t)

)
K diag

(
v(t)

)
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for mass variation instead of enforcing exact conservation. A com-
mon formulation of UOT incorporates a penalty on marginal de-
viation using the Kullback–Leibler divergence and is expressed as:

where the KL divergence terms softly enforce marginal align-
ment by penalizing discrepancies between the marginals of the 
transport plan 

(
P1n,P

⊤1n
)
 and the source/target mass (a,b). 

The regularization parameter 𝜏 > 0 controls this relaxation, bal-
ancing the trade-off between transport effort and fidelity to the 
input measures. As � → ∞, the soft constraints become the orig-
inal hard ones, and the UOT formulation reduces to the classical 
OT problem described in Equation (4).

Similarly, the regularization techniques can be applied to UOT 
problems to mitigate high computational costs and improve 
scalability. Consider the following entropic-regularized formu-
lation of UOT:

where 𝜏 > 0 and 𝜆 > 0 are regularization parameters. The ob-
jective in Equation (7) is strictly convex w.r.t. P over ℝn×n

+
, and 

therefore admits a unique solution (Chizat et  al.  2018; Pham 
et al. 2020). It can be efficiently solved via iterative matrix scal-
ing with kernel matrix K = exp{ − C ∕�}. Chizat et  al.  (2018) 
proposed a generalized Sinkhorn algorithm to address this 
problem, as outlined in Algorithm  2. Notably, as � → ∞, we 
have � ∕(� + �) → 1, causing the update steps for u and v in 
Algorithm 2 recover those in the classical Sinkhorn algorithm, 
given in Algorithm 1. Furthermore, Pham et al. (2020) showed 
that the computational complexity of the unbalanced Sinkhorn 
algorithm is of order ̃(n2).

2.7   |   The Gromov–Wasserstein Distance

The classical OT formulation (or Wasserstein distance) considers 
that the input probability measures are supported on the same 
underlying metric space. The Gromov–Wasserstein (GW) distance 
generalizes this framework to handle probability distributions 
supported on different metric spaces, making it well-suited for 
structural matching tasks. Specifically, the GW problem measures 
the minimal distortion required to align the intrinsic distance 
structures of two metric measure spaces via a joint coupling of 

their distributions. Given two metric measure spaces 
( , d ,�) 

and 
( , d , �), where d and d are respective distances and �, � 

are probability measures, the squared GW distance is defined as

where (d(x, x′), d(y, y′)) is the ground cost function. Typical 
choices include the �2 loss (i.e., (x1, x2) = ||x1−x2||2) and the KL 
divergence (i.e., (x1, x2) = x1 log

(
x1 ∕x2

)
− x1 + x2 ). Intuitively, 

the construction of the GW is under the assumption that if a 
point x ∈  is matched to y ∈ , and x′ to y′ , then the distance 
d

(
x, x′

)
 should closely match d

(
y, y′

)
. This alignment of pair-

wise distances enables GW to compare structural information 
across different domains. Figure 2 provides this geometric illustra-
tion and highlights the differences between the GW distance and 
the Wasserstein distance (i.e., the classical OT formulation). The 
GW distance compares distributions defined on different metric 
spaces by aligning their internal pairwise distances, whereas the 
Wasserstein distance compares distributions defined on a com-
mon metric space by aligning individual points directly.

To broaden the applicability of GW, Peyré et al. (2016) relaxed 
the requirement of d and d by allowing similarity matrices 
as inputs. Given two such similarity matrices C =

(
C
ii�

)
∈ ℝ

n×n 
and C =

(
C
jj�

)
∈ ℝ

n×n, which encode pairwise relations (e.g., 
the kernel matrix and the adjacency matrix of a graph), the GW 
problem becomes

where the term (C
ii′
,C

jj′

)
PijPi′j′ can be interpreted as 

the cost of jointly transporting the pair 
(
i, i′

)
 to 

(
j, j′

)
, and 

(P) = (C ,C)⊗ P. The second line rewrites the objec-
tive using a tensorized matrix form (Peyré et  al.  2016), where 
(C ,C) is a 4th-order cost tensor with entries (C

ii′
,C

jj′

)
, 

and the contraction (P) ∈ ℝ
n×n denotes the tensor-matrix mul-

tiplication defined by

UOT(a,b) = inf
P ∈ℝ

n×n
+

⟨C,P⟩ + 𝜏KL
�
P1n ‖a

�
+ 𝜏KL

�
P⊤1n ‖b

�
,

(7)

UOT𝜏,𝜆(a,b) = inf
P ∈ℝ

n×n
+

⟨C,P⟩ + 𝜏KL
�
P1n ‖a

�
+ 𝜏KL

�
P⊤1n ‖b

�
− 𝜆H(P),

GW
((
d ,�

)
, (d , �)

)

= inf
�∈Π(�,�) �×

(d(x, x�), d(y, y�))d�(x, y)d�(x�, y�),

(8)

GW
��
C ,a

�
, (C ,b)

�
= inf
P∈Π(a,b)

�
i,i� ,j,j�

�C
ii� ,C


jj�

�
PijPi�j�

= inf
P∈Π(a,b)

��C ,C�⊗P,P
�

= inf
P∈Π(a,b)

⟨(P),P⟩,

ALGORITHM 2    |    Computation of entropic-regularized UOT.

1: �Input: Kernel matrix K, probability mass vectors a, b, 
regularization parameters �, �

2: Initialize: t ← 0, u(0)
← 1n, v(0) ← 1n

3: repeat
4:  t ← t + 1
5:  u(t)

←

(
a⊘Kv(t−1)

) 𝜏

𝜏+𝜆, v(t) ←
(
b⊘K⊤u(t)

) 𝜏

𝜏+𝜆

6: until convergence
7: Output: P⋆

𝜏,𝜆 = diag
(
u(t)

)
K diag

(
v(t)

)

FIGURE 2    |    Geometric interpretation of the GW and Wasserstein 
distances. (a) The GW distance compares two distributions supported 
on different metric spaces, 

( , d) and 
( , d). (b) The Wasserstein dis-

tance to compare two distributions supported on the same metric space, (, d), where c(x, y) = d(x, y).

(a) The GW distance. (b) The Wasserstein distance.
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Solving the GW formulation in Equation  (8) leads to a non-
convex quadratic optimization problem. Similarly, to improve 
tractability, the entropic-regularized variant is often considered:

where 𝜆 > 0 denotes the entropic regularization strength. This 
objective can be minimized using an iterative scheme based 
on projected gradient descent (Peyré et  al.  2016; Solomon 
et al. 2016), where each iteration updates the coupling by solving 
a regularized OT problem. Specifically, the update at iteration 
t + 1 solves

with (P(t)
)
= (C ,C)⊗ P(t) serving as the cost matrix 

based on the current iteration. This subproblem (11) coincides 
with the entropic-regularized OT problem in Equation  (5) 
using C = (P(t)

)
, and can thus be efficiently solved via the 

Sinkhorn algorithm. The complete procedure is summarized 
in Algorithm 3. The computation complexity of Algorithm 3 is 
(n4) per iteration in general scenarios, primarily due to the 
repeated tensor-matrix operations. This high cost significantly 
limits the scalability of GW in large-scale applications.

2.8   |   Sparsification Techniques for OT Problems

Recall that to achieve a given approximation accuracy, the 
Sinkhorn algorithm for OT typically incurs a computational 
cost of order ̃(n2). This cost arises from two main sources: 
(1) each iteration requires matrix–vector multiplications with 
complexity (n2), and (2) the algorithm exhibits relatively 
slow, near-linear convergence. These limitations persist in the 
entropic-regularized variants of UOT and GW problems. In 
particular, the GW optimization suffers from even higher com-
plexity, (n4) per iteration, due to the costly construction of the 
kernel matrix involving tensor-matrix contractions.

Numerous studies have proposed techniques to accelerate the 
entropic-regularized versions, including partial updates of the se-
lected rows or columns of the transport plan (Genevay et al. 2016; 
Altschuler et  al.  2017; Alaya et  al.  2019; Lin et  al.  2022), first-
order acceleration schemes (Dvurechensky et al. 2018; Guminov 
et al. 2021; Thibault et al. 2021; Lin et al. 2022), and the incorpo-
ration of structural priors on the coupling matrix or the ground 
cost function (Xu et  al.  2019; Chowdhury et  al.  2021; Scetbon 
et al. 2022). In this report, we focus on sparse subsampling meth-
ods, which aim to reduce the computational burden of entropic-
regularized OT and its variants (e.g., UOT and GW) by addressing 
the key sources of inefficiency: high per-iteration cost and slow 
convergence. A summary of these methods is provided below.

•	 Reducing the per-iteration computational cost. These 
methods apply element-wise subsampling and construct 
sparse approximations of the kernel matrix based on differ-
ent selection criteria (Gasteiger et al. 2021; Li, Yu, Li, and 
Meng 2023; Li, Yu, Xu, and Meng 2023). Using such a surro-
gate for the original matrix, they achieve substantial savings 
in runtime without severely compromising accuracy with 
existing sparse matrix multiplication techniques (Drineas 
et al. 2006; Mahoney 2011; Gupta and Sidford 2018).

•	 Accelerating convergence through second-order methods. 
When viewed from the dual perspective, OT problems can 
benefit from second-order optimization techniques (Brauer 
et al. 2017; Tang et al. 2024; Tang and Qiu 2024; Wang and 
Qiu  2025). In particular, sparsified Newton-type methods 
approximate the Hessian and solve sparse linear systems to 
compute search directions efficiently, thereby reducing the 
total number of iterations required.

3   |   Sparsification for Kernel Matrix

In this section, we focus on methods that sparsely subsample 
the kernel matrix based on specific selection criteria, such as im-
portance sampling (Li, Yu, Li, and Meng  2023; Li, Yu, Xu, and 
Meng 2023) and locality-sensitive hashing (Gasteiger et al. 2021). 
These methods significantly reduce the matrix operations per 
iteration, for instance, line 5 in Algorithms 1 and 2, and lines 
4–6 in Algorithm 3. By constructing efficient approximations of 

(9)((P))ij=((C ,C)⊗P
)
ij
=
∑
i� ,j�

(C
ii� ,C


jj�

)
Pi�j� .

(10)GW�

��
C ,a

�
, (C ,b)

�
= inf

P ∈Π(a,b)
⟨(P),P⟩ − �H(P),

(11)P(t+1) = arg inf
P ∈Π(a,b)

⟨(P(t)
)
,P

⟩
− �H(P),

ALGORITHM 3    |    Computation of entropic-regularized GW.

1: �Input: Similarity matrices C, C, probability mass vectors a , b, ground cost function , regularization parameter �, number 
of outer/inner iterations R, H

2: Initialize: P(0)
← ab⊤

3: for r = 0 to R − 1 do
4:    Compute the cost matrix (P(r)

)
= (C ,C)⊗ P(r)

5:    Compute the kernel matrix K (r) = exp
{
− (P(r)

)
∕�

}
6:    Update the coupling matrix P(r+1) using Sinkhorn scaling in Algorithm 1
      (a) Initialize: u(0)

← 1n, v
(0)

← 1n
      (b) for h = 0 to H − 1 do
            u(h+1)

← a⊘ K (r)v(h), v(h) ← b⊘ K (r)⊤u(h+1)

           end for
      (c) P(r+1)

← diag
(
u(H)

)
K (r)diag

(
v(H)

)
7: end for
8: Output: GW� =

⟨(P(R)
)
,P(R)

⟩
− �H

(
P(R)

)
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the original kernel matrix, these methods enable near log-linear 
computational complexity ̃(n) for problems (5) and (7), and near-
quadratic complexity (n2+�) (𝛿 > 0 is an arbitrary small num-
ber) for problem  (10), while maintaining a fixed approximation 
accuracy.

3.1   |   Importance Sparse Sinkhorn Method

Li, Yu, Li, and Meng  (2023) adopted the Poisson sam-
pling framework following the recent work of Braverman 
et al. (2021) to construct a sparse sketch K̃  that approximates 
the original kernel matrix K . The central objective is to con-
struct an asymptotically unbiased approximation K̃  with low 
variance. To this end, Li, Yu, Li, and Meng (2023) leveraged 
importance sampling (Liu and Liu 2001), which assigns higher 
sampling probabilities to entries with larger magnitudes to 
improve estimation efficiency and reduce variance when esti-
mating a summation. When the exact values are not available, 
appropriate upper bounds can be used to approximate the 
sampling probabilities (Kahn and Marshall 1953; Owen 2013; 
Zhao and Zhang 2015).

Specifically, for the entropic-regularized OT problem in 
Equation (5), a sparse approximation K̃ of K is constructed via 
Poisson sampling. In this approach, a small fraction of elements 
from K are selected and rescaled, while the remaining entries 
are set to zero. Given a subsampling budget s < n2, and a set of 
sampling probabilities 

{
pij
}n
i,j=1

 satisfying 
∑

i,jpij = 1, the sparse 
matrix K̃ is defined as

where the rescaling ensures that K̃ is an unbiased estimator 
of K, and the expected number of non-zero entries satisfies 
�

�
nnz

�
K̃
��

=
∑

i,jp
∗
ij
≤ s. Li, Yu, Li, and Meng (2023) proposed 

an importance sampling scheme to determine pij:

This is motivated by three key observations. First, the OT plan 
P⋆
𝜆
 shares the same sparsity structure as the kernel K due to 

Equation  (6). Second, the transport loss can be expressed as �
C,P⋆

𝜆

�
=

∑
i,jCij

�
P⋆
𝜆

�
ij
, so sparsifying K can be interpreted as 

selecting terms from this summation. Third, from a variance 
reduction perspective, the optimal sampling probabilities for es-
timating this sum should be proportional to Cij

(
P⋆
𝜆

)
ij
. Suppose 

that Cij is upper bounded by a constant c0, then due to the mar-
ginal constraints 

(
P⋆
𝜆

)
ij
≤min

{
ai, bj

}
, there exits an upper 

bound Cij
(
P⋆
𝜆

)
ij
≤ c0

√
aibj, which leads to the probability for-

mulation in Equation (13).

The corresponding procedure is provided in Algorithm  4, 
denoted as Spar-Sink algorithm. Figure  3 provides a visual 
comparison between the Spar-Sink and Sinkhorn algorithm. 

Specifically, Spar-Sink applies importance sampling to the ker-
nel matrix, yielding a sparse structure K̃ and the resulting OT 
plan �P

⋆

𝜆
. Both theoretical analysis and empirical evidence sug-

gest that the subsampling budget s should be at least of order 
̃(n) to ensure a reliable approximation.

Following the same line of thinking, the sampling probabilities 
for the entropic-regularized UOT problem in Equation  (7) are 
similarly defined as follows:

The Spar-Sink algorithm for entropic-regularized UOT is ob-
tained by replacing the full kernel matrix in Algorithm 2 with 
its sparse counterpart, computed using Equations (12) and (14). 
The resulting estimator is denoted as ŨOT�,�(a,b). For further 
theoretical justification and algorithmic details, we refer the 
reader to Li, Yu, Li, and Meng (2023).

Theoretical analysis demonstrates that, under mild regularized 
conditions, the approximation error between the sparse estima-
tors and theirs exact counterparts remains sufficiently small, pro-
vided that the subsampling budget s and the sample size n satisfy 
a suitable scaling relation. That is, ÕT�(a,b) and ŨOT�,�(a,b) 
are statistically consistent w.r.t. the entropic-regularized OT 
and UOT distance OT�(a,b) and UOT�,�(a,b), respectively. The 
proposed sparse algorithms reduce the per-iteration complexity 
to (s) = ̃(n) while maintaining the same convergence rate in 
terms of the number of iterations.

The underlying motivation of this sparsification strategy is rooted 
in the fact that, when the regularization parameter � is small, the 
OT plan tends to be sparse; see Peyré and Cuturi (2019) for a de-
tailed discussion. Importance-based sparsification effectively ex-
ploits this structure by constructing a sparse approximation of the 
kernel matrix K, which mirrors the sparsity pattern of the trans-
port plan. It is worth noting that the sampling probabilities for 
entropic-regularized OT, defined in Equation (13), depend solely 
on the marginal distributions ai and bj, and are independent of 
the corresponding cost values Cij. From a different perspective, 

(12)K̃ ij=

{
Kij∕p

∗
ij

with prob. p∗
ij
=min

(
1, spij

)

0 otherwise,

(13)pij =

�
aibj

∑n
i,j=1

�
aibj

, 1 ≤ i, j ≤ n.

(14)pij =

�
aibj

� �

2�+�K
�

2�+�

ij

∑
i,j

�
aibj

� �

2�+�K
�

2�+�

ij

, 1 ≤ i, j ≤ n.

ALGORITHM 4    |    Spar-Sink algorithm for entropic-regularized 
OT.

1: Input: Kernel matrix K, probability mass vectors a, b
2: Construct Spar-Sink according to (12) and (13)
3: �Compute �P

⋆

𝜆
 with K̃ using Sinkhorn scaling in 

Algorithm 1
  (a) Initialize: t ← 0, u(0)

← 1n, v
(0)

← 1n
  (b) repeat
        t ← t + 1
        u(t)

← a⊘ �Kv(t−1), v(t) ← b⊘ �K
⊤
u(t)

            until convergence
  (c) Compute �P

⋆

𝜆
= diag

(
u(t)

)
�K diag

(
v(t)

)

4: Output: �OT𝜆(a,b) =
⟨
C, �P

⋆

𝜆

⟩
− 𝜆H

(
�P
⋆

𝜆

)
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alternative sparsification scheme (Gasteiger et al. 2021) has also 
been proposed that relies directly on the cost structure itself.

3.2   |   Importance Sparsification for GW Distance

Following a similar line of reasoning, Li, Yu, Xu, and 
Meng  (2023) proposed a randomized sparsification method 
called Spar-GW to calculate the entropic-regularized GW dis-
tance (10), using importance sampling principles. Instead of 
directly sparsifying the kernel matrix, they construct a sparse 
surrogate ̃(P(r)

)
 to approximate the full cost matrix (P(r)

)
 in 

the rth iteration. This strategy serves a dual purpose: it accel-
erates the Sinkhorn scaling steps and substantially reduces the 
computational cost of evaluating the tensor-matrix contrac-
tions involved in (P(r)

)
.

To construct ̃(P̃(r)
)

, consider the definition of (P(r)
)
 in 

Equation (9). The idea is to build a collection of s sparse matri-
ces 

{
L̃i⋅j⋅

}
(i,j)∈ extracted from the 4th-order tensor (C ,C), 

where  =
{(
il, jl

)}s
l=1

 is a set of index pairs sampled according 
to a given sampling budget s. For each (i, j) ∈ , the matrix L̃i⋅j⋅ 
contains only a small number of meaningful entries:

The final sparse cost approximation is then computed as 
̃�P̃(r)

�
=

∑
(i,j)∈ L̃i⋅j⋅P̃

(r)

ij , where P̃
(r)

ij  corresponds to the (i, j)th 
entry of the transport matrix in the iteration r. Setting the zero en-
tries to ∞ in Equation (15) includes a sparse structure in the cor-
responding kernel K̃

(r)
, which is inherited by the transport plan 

matrix P̃
(r)

. This sparsification scheme simultaneously reduces the 
cost of the tensor-matrix computation and accelerates the Sinkhorn 
scaling steps. The sparsification scheme  is constructed following 
a similar importance sampling principle as in Equation (13), mo-
tivated by the same reasons discussed in Section 3.1. The overall 
procedure is illustrated in Figure 4; see Li, Yu, Xu, and Meng (2023) 
for further algorithmic and theoretical details.

Compared to other accelerated methods for computing the 
entropic-regularized GW distance, such as scalable GW learn-
ing (Xu et al. 2019), low-rank GW (Scetbon et al. 2022), sliced 
GW (Titouan, Flamary, et  al.  2019), and linear-time GW 
(Scetbon et  al.  2022), which typically rely on restrictive as-
sumptions on the ground cost function  (e.g., requiring a �2 

(15)L̃ii�jj� =

⎧
⎪⎨⎪⎩

�C
ii� ,C


jj�

�
if
�
i�, j�

�
∈

0 otherwise
for (i, j)∈ .

FIGURE 3    |    Illustration of the Sinkhorn algorithm (left) and the Spar-Sink algorithm (right). In Spar-Sink, each entry of K is independently sam-
pled according to 

{
pij
}
 defined in Equation (12). The non-zero entries are highlighted in color.

FIGURE 4    |    Illustration of the Spar-GW method. The sparse matrices 
{
L̃i⋅j⋅

}
(i,j)∈ are sampled from 

{
Li⋅j⋅

}
(i,j)∈ respectively according to the prob-

abilities 
{
pij
}
 defined in Equation (13), yielding the sparse kernel and transport plan matrices K̃

(r)
 and P̃

(r)
.
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loss or decomposability), on the coupling matrix P (e.g., low-
rank or tree-structured) or on the input data type (e.g., requir-
ing point clouds or graphs), this method achieves a substantial 
computational speed up without imposing such constraints. 
Specifically, it reduces the overall complexity from (n4) to 
(n2 + s2

)
= (n2+�), where the subsampling budget satisfies 

s = (n1+�) for any arbitrary small 𝛿 > 0. This improvement im-
plies that only approximately n2 elements need to be accessed 
from a full 4D cost tensor containing n4 elements, while still 
maintaining a provable approximation guarantee. Moreover, 
this importance sparsification mechanism can be further ap-
plied to other related problems, including approximation of the 
original GW distance (8), the unbalanced GW distance (Séjourné 
et al. 2021; Kawano and Mason 2021; Luo, Wang, et al. 2022), 
and the fused GW distance (Titouan, Courty, et al. 2019; Vayer 
et al. 2020).

3.3   |   Sparse LSH and Locally Corrected 
Nyström Method

Unlike prior methods that focus solely on kernel matrix sparsi-
fication for entropic-regularized OT, Gasteiger et al.  (2021) pro-
posed a two-stage approximation method, called locally corrected 
Nyström Sinkhorn (LCN-Sinkhorn) method. In the first stage, 
rather than applying random sparsification, LCN-Sinkhorn 
performs hard-thresholding based on locality-sensitive hash-
ing (LSH) (Shrivastava and Li 2014) to generate a sparse kernel 
structure that preserves local interactions. In the second stage, 
the method applies a local correction to the classical Nyström 
approximation, using the LSH-induced sparsity pattern to better 
correct global geometry. By fusing both local (sparse) and global 
(low-rank) approximations, LCN-Sinkhorn is able to effectively 
model interactions between both nearby and distant points.

In the context of the entropic-regularized OT problem in 
Equation  (5), LCN-Sinkhorn focuses exclusively on interac-
tions between spatially proximate points based. In the first 

stage, it approximates the full cost matrix C with a sparse ma-
trix Csp, where

This sparsified cost matrix then induces the corresponding ker-
nel matrix K sp and transport plan Psp following from their defi-
nitions, whose non-zero entries are concentrated almost entirely 
around each point's nearest neighbors, effectively capturing only 
the most relevant local interactions. To efficiently identify such 
“near” point pairs, LCN-Sinkhorn employs LSH, a randomized 
technique that maps similar points to the same hash bucket with 
high probability, while ensuring dissimilar points are likely to 
fall into different buckets. In this work, the authors specifically 
consider cross-polytope LSH (Andoni et al. 2015) and k-means 
LSH (Paulevé et al. 2010), offering a distinct balance between 
locality preservation and computational efficiency.

The second stage leverages the locally sparse structure induced 
by LSH to refine the global low-rank approximation obtained 
via the Nyström method (Williams and Seeger  2000; Musco 
and Musco 2017). The Nyström method approximates the pos-
itive semi-definite kernel matrix K by selecting a small subset 
of l representative points (landmarks) and constructing a low-
rank factorization of the form K ≈ KNsy = UA−1V , where A is 
the kernel matrix evaluated on the landmarks, and U , V  encode 
cross-similarities between the input points and the landmarks. 
The authors adopted k-means Nyström (Oglic and Gärtner 2017) 
to choose the landmarks from 

{
x i
}
∪
{
yj
}
. The final approxi-

mation is then obtained by the correction of the Nyström ap-
proximation by the exact values of LSH sparsification elements: 
KLCN = KNsy − K

sp
Nsy

+ K sp, where K sp
Nsy

 contains the entries of 
the Nyström approximation KNsy corresponding to the non-
zero elements of K sp. Figure 5 provides a direct illustration of 
LCN-Sinkhorn approximation KLCN w.r.t. the kernel matrix K. 
The intermediate approximated kernel matrices at each step are 

C
sp
ij

=

{
Cij if x i and yj are

‘‘near’’

∞ otherwise.

FIGURE 5    |    Schematic illustration of the LCN-Sinkhorn approximation. The matrix KNsy provides a global low-rank approximation of the kernel 
matrix K, which is subsequently refined by incorporating the locally sparse correction K sp. The fusion of these two components yields the locally 
corrected Nyström approximation KLCN.
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also shown. This approach improves upon prior work Nyström–
Sinkhorn (Altschuler et  al.  2019), which applied the Nyström 
approximation directly to the entropic-regularized OT problem 
without local correction. Further technical details can be found 
in Altschuler et al. (2019) and Gasteiger et al. (2021).

Gasteiger et al.  (2021) demonstrates that the two stages (e.g., 
local LSH sparsification and global low rank approximation) 
are complementary rather than competing. LSH-based spar-
sification may become ineffective in scenarios where pairwise 
costs are very similar, the regularization is very strong, or 
points have a large number of close neighbors. Conversely, the 
Nyström approximation can be unstable under weak regular-
ization or when the cost matrix exhibits high variability. By 
adjusting the number of neighbors and landmarks, the method 
enables a smooth interpolation between LSH-based sparsifi-
cation and Nyström–Sinkhorn, providing a flexible trade-off 
between local and global approximation. Combining both 
strategies, the method offers great effectiveness and flexibility 
across a wider range of problem settings. Moreover, while the 
Spar-Sink method focuses on independent importance sam-
pling based on the marginal distributions (i.e., the pointwise 
masses), LCN-Sinkhorn captures both local and global struc-
tural interactions in the data. It first achieves log-linear time 
complexity and is stable enough to substitute full entropic-
regularized OT problem. Specifically, the overall computa-
tional complexity is (n log(n) + nl2

)
, where l is the number 

of landmarks.

4   |   Sparsification for Hessian Matrix

In this section, we explore the sparsified second-order meth-
ods based on Newton-type framework to accelerate the over-
all convergence of entropic-regularized OT problem. It is 
well known that, under some smoothness assumptions on 
the objective function, the Newton method enjoys a fast qua-
dratic local convergence rate, typically requiring significantly 
fewer iterations than the Sinkhorn algorithm. However, for 
entropic-regularized OT, each Newton iteration involves solv-
ing a dense linear system with a computational cost of (n3), 
which undermines the efficiency advantage of Sinkhorn. To 
address this challenge, recent works have proposed sparsified 
second-order methods that leverage the dual formulation of 
the entropic-regularized OT problem. We emphasize that the 
previously discussed kernel-based methods are directly ap-
plied to the primal OT formulation by substituting the original 
kernel matrix with a sparser one. In contrast, the Hessian-
based sparsification methods, typically framed within a 
Newton-type framework, are primarily based on the dual 
formulation of the entropic-regularized OT problem. These 
methods aim to reduce the computational burden by spar-
sifying the Hessian matrix and further offer some valuable 
insights into efficient Hessian approximation. Notable meth-
ods include hard-thresholding-based sparsification (Tang 
et  al.  2024), off-diagonal sparsification scheme that guaran-
tees strict approximation error control (Tang and Qiu 2024), 
and hybrid techniques combining low-rank structure with 
top-entry selection for efficient Hessian approximation (Wang 
and Qiu 2025).

4.1   |   Dual Formulation for  
Entropic-Regularized OT

By introducing the dual variables � ∈ ℝ
n,� ∈ ℝ

n, and applying 
the minimax theorem, the entropic-regularized OT problem in 
Equation (5) admits the following dual formulation (Peyré and 
Cuturi 2019):

where F(�,�) is referred to as the Lyapunov potential func-
tion. Solving the original entropic-regularized formulation is 
thus equivalent to maximizing this dual potential. Within this 
framework, the matrix scaling steps in the Sinkhorn algorithm 
can be interpreted as performing alternating maximization over 
� and �, also known as applying the block coordinate ascent 
(Sinkhorn 1964; Cuturi 2013; Yule 1912); a detailed algorithm 
is provided in the following subsection. Let �⋆ and �⋆ denote an 
optimal solution to Equation (16). Then, the corresponding OT 
plan P⋆ can be recovered element-wise via

Obviously, optimizing Equation  (16) is equivalently to solving 
the following problem:

It is worth noting that the solution to Equation (18), or equiv-
alently to (16), is not unique: if 

(
�⋆, �⋆

)
 is one solution, then 

so is 
(
�⋆ + c1n, �

⋆ − c1n
)
 for any constant c. This redundant 

degree of freedom makes the Hessian matrix of f (�,�) singu-
lar, but one can simply remove it by forcing �⊤1n + �⊤1n = 0 or 
�n = 0. In what follows, we omit this subtlety for the brevity 
of presentation, and assume that the Hessian matrix is non-
singular. Importantly, Equation  (18) defines a smooth, un-
constrained, and strictly convex optimization problem after 
resolving the redundant degree of freedom in the variables 
(�, �), which makes it amenable to a wide range of optimiza-
tion techniques (Brauer et al. 2017; Dvurechensky et al. 2018; 
Guminov et al. 2021; Thibault et al. 2021; Lin et al. 2022). First-
order methods such as gradient descent, as well as second-
order approaches including Newton (Dembo et  al.  1982; Li 
et  al.  2004) and quasi-Newton (Dennis and Moré  1977; Liu 
and Nocedal 1989) methods, can be effectively applied to solve 
it. The gradient and Hessian matrix of f (�,�) have the follow-
ing closed-form expressions:

(16)

max
�,�

F(�,�) =max
�,�

min
P

⟨C,P⟩−𝜆H(P)−𝛼⊤
�
P1n−a

�
−𝛽⊤

�
P⊤1n−b

�

=max
�,�

�⊤a+�⊤b−𝜆

n�
i,j=1

exp
��

𝛼i+𝛽 j−Cij
�
∕𝜆

�
,

(17)P⋆
ij = exp

{(
𝛼⋆
i + 𝛽⋆j − Cij

)
∕𝜆

}
.

(18)

min
�,�

f (�, �)=min
�,�

−F(�,�)

=min
�,�

𝜆

n∑
i,j=1

exp
{(

𝛼i+𝛽 j−Cij
)
∕𝜆

}
−�⊤a−�⊤b.

(19)

∇f (�,�) =

[
P1n−a

P⊤1n−b

]
, H(�,�)=∇2f (�,�)

=𝜆−1

[
diag

(
P1n

)
P

P⊤ diag
(
P⊤1n

)
]
.
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In particular, the matrix P is a function of the dual variables 
� and �, as defined in Equation (17). There has been extensive 
research devoted to developing efficient sparsification strat-
egies for the Hessian matrix H(�,�), motivated by various 
perspectives (Tang et al. 2024; Tang and Qiu 2024; Wang and 
Qiu 2025).

4.2   |   Hard-Thresholding Rule for Hessian Matrix

Tang et al. (2024) proposed a simple yet effective sparsification 
strategy for the Hessian matrix based on a hard-thresholding 
rule, aimed at accelerating the Newton method in the context of 
Sinkhorn scaling. This approach enables efficient approximate 
solutions to the Newton system HΔz = − ∇ f  by leveraging the 
sparsity of the Hessian, significantly reducing the per-iteration 
computational cost from the original (n3) to (n2). This 
method, called the Sinkhorn–Newton–Sparse (SNS) algorithm, 
maintains the fast convergence guarantees of the Newton frame-
work while substantially alleviating the computational burden.

The design of SNS is motivated by the observation that the Hessian 
of the Lyapunov potential becomes approximately sparse when the 
number of Sinkhorn iterations is sufficiently large and the regu-
larization parameter � is sufficiently small. More precisely, if the 
number of iterations t and the inverse regularization parameter 
1∕� are large enough, then after t Sinkhorn updates, the Hessian 
matrix becomes 

(
�, �̃

)
=
(
3∕(2n), �̃

)
-sparse for some parame-

ter �, which depends on the problem size n, the iteration count t, 
and �. Here, the 

(
�, �̃

)
-sparsity is defined in the sense that there 

exists a matrix M with at most a proportion � of non-zero entries 
(i.e., ‖M‖0 ∕n2 ≤ �) such that ‖H−M‖1 ≤ �̃. Based on this anal-
ysis, one can safely approximate M with a relaxed target spar-
sity 𝜌 = (1∕n) > 3∕(2n) after a moderate number of Sinkhorn 
iterations.

The SNS algorithm consists of two stages. In the first stage, it 
performs N1 iterations of the Sinkhorn algorithm to update the 

dual variables � and �, providing a warm start and promoting 
approximate sparsity in the Hessian matrix H. The number 
of iterations N1 can be either fixed in advance or determined 
adaptively. In the second stage, SNS switches to the Newton 
method for further updating the dual variables, while applying 
a hard-thresholding rule to sparsify the Hessian. Specifically, 
all elements in H smaller than a user-specified threshold � 
(equals to the ⌊�n2 ⌋ th largest element in H) are set to zero. This 
truncation preserves both the symmetry and diagonal domi-
nance of the original matrix, yielding a sparse approximation 
H̃ with a desired sparsity level �. Based on H̃, an approximate 
Newton search direction Δ̃z is computed as a surrogate for the 
exact solution Δz to the Newton system HΔz = − ∇ f . This 
system can be efficiently solved using the conjugate gradient 
method for linear systems (Golub and Van Loan 2013), lead-
ing to a per-iteration complexity of (�n3) = (n2). It is worth 
noting that SNS differs from the method in Brauer et al. (2017) 
that directly applies Newton's method to minimize the dual 
objective in Equation (18), which incur a much higher cost of 
(n3) per iteration. The complete procedure is summarized in 
Algorithm 5.

4.3   |   Off-Diagonal Sparsification 
for Hessian Matrix

However, as pointed out by Tang and Qiu (2024), due to the spar-
sification strategy adopted in SNS, the approximated Hessian 
matrix H̃ may not be positive definite. As a result, there is no 
strong guarantee of invertibility when solving the Newton sys-
tem using the conjugate gradient method. Furthermore, while 
Tang et al. (2024) claimed that SNS achieves a faster convergence 
rate, the justification is purely empirical; no rigorous theoretical 
analysis is provided to support the convergence behavior of the 
method. Acknowledging these limitations, Tang and Qiu (2024) 
introduced a safe Newton-type algorithm, referred to as the 
Safe and Sparse Newton method for Sinkhorn (SSNS), which 
incorporates a novel sparsification scheme designed to have a 

ALGORITHM 5    |    Sinkhorn-Newton-Sparse (SNS) algorithm.

  1: Input: Cost matrix C, probability mass vectors a, b, initial dual variables �0, �0, number of iterations N1, N2, threshold �
  2: Initialize: t ← 0, (�, �)←

(
�0, �0

)
,

  3: # Sinkhorn stage
  4: while t < N1 do

  5:    P ← exp
{

�1⊤n + 1n�
⊤ −C

𝜆

}
, � ← � + �

(
log(a) − log

(
P1n

))

  6:    P ← exp
{

�1⊤n + 1n�
⊤ −C

𝜆

}
, � ← � + 𝜆

(
log(b) − log

(
P⊤1n

))
  7:    t ← t + 1
  8: end while
  9: # Newton stage
10: z ← (�,�)
11: while t < N1 + N2 do
12:    Construct sparse approximation H̃ by thresholding Hessian H with parameter �
13:    Compute Newton direction Δ̃z by solving H̃Δ̃z = − ∇ f  using the conjugate gradient method
14:    Perform line search to determine step size r
15:    z ← z + r ⋅ Δ̃z
16:    t ← t + 1
17: end while
18: Output: P⋆ = exp

{
�1⊤n + 1n�

⊤ −C

𝜆

}
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well-controlled approximation error and to ensure the positive 
definiteness of the resulting Hessian approximation. Theoretical 
analyses of both global and local convergence rates are also 
presented.

The sparsification scheme in SSNS is constructed to satisfy two 
essential criteria. First, the approximated matrix H̃ should re-
main sufficiently close to the original Hessian H, with a tunable 
approximation error �, so that essential information is retained. 
Second, the positive definiteness of H̃ should be preserved, as 
the Newton system HΔz = − ∇ f  must remain solvable. To this 
end, Tang and Qiu  (2024) proposed an adaptive off-diagonal 
sparsification algorithm tailored to these two goals, which re-
tains the diagonal blocks diag

(
P1n

)
 and diag

(
P⊤1n

)
 unchanged, 

while applying sparsification only to the off-diagonal compo-
nents P. Given a threshold �, SSNS proceeds by identifying the 
smallest-magnitude entries in each column whose cumulative 
sum is below �. In particular, it retains the largest set of entries 
such that their cumulative sum is ≤ �, while the inclusion of the 
next smallest entry would make the sum strictly greater than �. 
These identified entries are then removed, resulting in a spar-
sified version of the Hessian, followed by the same procedure 
across each row. This off-diagonal truncation strategy always 
avoids singularity in H̃ regardless of sparsification parameter 
during the computation of Newton search directions. Moreover, 
the scheme guarantees that the residual error, measured in the 
elementwise �1-norm, is bounded by the specified threshold � 
(up to a scaling factor �). That is, ‖‖‖H−H̃

‖‖‖1 ≤ � ∕�. The com-
plete sparsification procedure is summarized in Algorithm  6 

and illustrated in Figure 6. The left of SSNS is to choose moder-
ate value of step size r and threshold �; see more details in Tang 
and Qiu (2024).

Theoretically, SSNS is demonstrated to achieve global conver-
gence to the unique optimal solution from any arbitrary ini-
tialization, without requiring a warm start via the Sinkhorn 
algorithm. Furthermore, SSNS attains a quadratic local conver-
gence rate, matching that of the classical Newton method based 
on the full (dense) Hessian matrix. The algorithm is robust with 
respect to the choice of initial value, step sizes, sparsification 
strength, and hyper-parameters. However, this work does not 
provide a detailed analysis of the per-iteration computational 
complexity of each Sinkhorn–Newton step, leaving open the 
question of its precise computational guarantees.

4.4   |   Low-Rank and Sparsification 
for Hessian Matrix

The SSNS method faces a key limitation: The sparsity level 
of the Hessian matrix after sparsification is not known in 
advance, making it challenging to predict the actual com-
putational cost in practice. To address this issue, Wang and 
Qiu  (2025) conducted a more thorough investigation of the 
effects of Hessian matrix sparsification, which motivates a 
novel scheme that enables explicit control over the sparsity of 
the Hessian approximation. Similar to the idea in Gasteiger 
et al. (2021), Wang and Qiu (2025) investigate scenarios where 

FIGURE 6    |    Illustration of the sparsification procedure for matrix P in SSNS. In the first step, the smallest entries in each column of P are selected 
such that their cumulative sum remains below the threshold �, while the inclusion of the next entry would make it exceed �. These elements are stored 
in the auxiliary matrix �. The same operation is then applied row-wise to Δ. The final sparse approximation is obtained as P̃ = P − Δ.

ALGORITHM 6    |    Sparsifying the Hessian matrix in SSNS.

  1: Input: Cost matrix C, probability mass vectors a, b, dual variables �, �, threshold �
  2: Initialize: Δ← zero matrix in ℝn×n, P ← exp

{
�1⊤n + 1n�

⊤ −C

𝜆

}

  3: for j = 1, 2, … ,n do
  4:  �  Identify the smallest-magnitude entries in P

⋅j whose cumulative sum is below � but would exceed � if one more entry 
were included; copy them to the corresponding positions in the zero vector Δ

⋅j ∈ ℝ
n

  5: end for
  6: for i = 1, 2, … ,n do
  7:  �  Identify the smallest-magnitude entries in Δi⋅ whose cumulative sum is below � but would exceed � if one more entry 

were included; set all remaining entries in Δi⋅ to zero
  8: end for
  9: P̃ ← P − Δ

10: Output: �H ← 𝜆−1

[
diag

(
P1n

)
�P

�P
⊤

diag
(
P⊤1n

)
]
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the transport plan is dense, in which case existing sparsifi-
cation strategies tend to perform poorly. To overcome this, 
they introduce an additional low-rank correction term to 
the sparsified Hessian, aiming to recover the essential cur-
vature information lost during sparsification. This leads to 
the Sparse-Plus-Low-Rank (SPLR) method, which combines 
a hard-thresholded sparse approximation with carefully con-
structed low-rank components. The resulting quasi-Newton 
algorithm achieves both fast convergence and improved com-
putational efficiency.

Wang and Qiu (2025) conducted a comprehensive analysis of the 
eigenvalue structure of the sparsified Hessian matrix, offering new 
theoretical insights into the effects of sparsification and establish-
ing a rigorous foundation for designing flexible sparsification strat-
egies. Within the off-diagonal sparsification framework adopted in 
SSNS, the sparsification is applied exclusively to the off-diagonal 
component P. A sparsified version of P, denoted by P̃, is defined 
over an index set  =

{(
il, jl

)}s
l=1

⊂ {(i, j)}ni,j=1. The sparsified ma-
trix and its associated Hessian approximation are given by

Wang and Qiu (2025) establishes a theoretical result characteriz-
ing how the condition number of H̃ evolves as the sparsity pat-
tern changes. Specifically, under a certain regularity condition, 
they show that the increased sparsity level can lead to improved 
numerical conditioning. Formally, let 1 ⊂ 0, and suppose 

there exists a positive integer p > 0 such that 
(
�H1

)p
> 0. Then, 

the condition number of H̃1 is smaller than that of H̃0. In par-
ticular, setting 0 as the full index set {(i, j)}ni,j=1, and this result 

implies that any sparsification pattern 1 satisfying the regular-
ity condition preserves the positive definiteness of H and im-
proves its numerical stability. As a concrete example, they show 
that the sparsity pattern ∗ = {(i, j) ∣ i = 1or j = 1} satisfies the 
regularity condition with exponent p = 4, that is, 

(
�H∗

)4
> 0.

Building upon this insight, the sparsification scheme ∗(�) in 
SPLR consists of the structurally important index set ∗ and a 
data-dependent component (�), where (�) contains the ⌊�n2 ⌋ 
largest-magnitude entries in the matrix P. The full sparsification 
procedure is described in Algorithm  7. Remark that the hard-
thresholding rule used in SNS selects the ⌊�n2 ⌋ th largest entry 
of the Hessian matrix H as the cutoff threshold �, which leads to 
similar sparsity pattern as H̃ in SPLR. Therefore, the primary 
distinction between the SNS and SPLR sparsification schemes lies 
in: (1) the off-diagonal sparsification pattern, since SNS directly 
sparsifies the full Hessian matrix instead of the off-diagonal sub-
matrix P; (2) the inclusion of the index set ∗, as illustrated in 
Figure 7. This additional structure plays a critical role in guar-
anteeing the improved condition number after sparsification, 
which further ensures the positive definiteness of the sparsified 
Hessian, as justified by the theoretical analysis discussed earlier.

Considering the scenarios in which the Hessian matrix H is 
relatively dense, the SPLR method augments the sparse approx-
imation H̃ with additional low-rank terms to recover essen-
tial curvature information lost during sparsification. The final 
Hessian approximation H̃ takes the following form:

where mss⊤ + ntt⊤ is a low-rank correction of rank two, and hI 
is a shift term added to improve the numerical stability during 
matrix inversion. Under this construction, SPLR proceeds 
within a quasi-Newton optimization framework, where the 
dual variables are updated by computing the search direction 
Δz via solving the linear system H̃Δz = − ∇ f . While the aug-
mentation in Equation (20) makes H̃ dense again, its structure 
allows for efficient matrix inversion using sparse and low-rank 
arithmetic techniques. The parameters m,n, h, s, and t  are de-
termined based on the classical secant condition from the 
Broyden–Fletcher–Goldfarb–Shanno (BFGS) update rule (Liu 

(
�P

)
ij
=

{
Pij (i, j)∈
0 otherwise

, �H = 𝜆−1

[
diag

(
P1n

)
�P

�P
⊤

 diag
(
P⊤1n

)
]
.

(20)�H = �H +
(
mss⊤ + ntt⊤

)
+ hI ,

FIGURE 7    |    Comparison of the sparsification procedures for matrix P in SNS and SPLR. The SNS scheme retains only the entries with the largest 
magnitudes, whereas SPLR additionally involves the index set ∗ to achieve better theoretical properties on the sparsified matrix, such as the im-
proved condition number.

ALGORITHM 7    |    Sparsifying the Hessian matrix in SPLR.

1: �Input: Cost matrix C, probability mass vectors a, b, dual 
variables �, �, proportion parameter 0 < 𝜌 < 1

2: Compute P ← exp
{

�1⊤n + 1n�
⊤ −C

𝜆

}

3: �Identify the index set (�) corresponding to the ⌊�n2 ⌋ 
largest entries in P

4: Construct ∗(�) = ∗ ∪ (�)
5: Output: �H∗(𝜌)

← 𝜆−1
⎡⎢⎢⎣
diag

�
P1n

�
�P∗(𝜌)

�P
⊤

∗(𝜌)
diag

�
P⊤1n

�
⎤⎥⎥⎦
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and Nocedal 1989; Cuturi and Peyré 2018). Detailed algorithmic 
procedures and implementation considerations are further elab-
orated in Wang and Qiu (2025).

Convergence analysis shows that the SPLR algorithm enjoys a 
global convergence guarantee, with a worst-case convergence 
rate that is at least linear. In practice, empirical results indicate 
that SPLR often exhibits super-linear-like convergence behav-
ior across a range of problem instances. Wang and Qiu (2025) 
asserts that SPLR achieves rapid convergence with low com-
putational cost, making it a practical alternative to fully dense 
second-order methods. The per-iteration complexity of SPLR is 
(n2), identical to that of SNS, as it preserves the same order of 
non-zero elements in the sparsified Hessian matrix. Combined 
with its global linear convergence rate, this leads to an overall 
computational cost of (n2 log(1∕�)) for a given precision tol-
erance �.

5   |   Other Related Works

Other related works such as partial-update OT and mini-batch 
OT also randomly or selectively sample a few rows/columns 
of the transport plan or data samples to accelerate OT compu-
tations, which also can be viewed as structured sparsification 
strategies.

In particular, partial-update OT methods update only part 
of the transport plan in each iteration according to certain 
sampling or selection criteria. Representative examples in-
clude the greedy Sinkhorn (GREENKHORN, Altschuler 
et  al.  2017), stochastic OT (Genevay et  al.  2016), screening 
Sinkhorn (SCREENKHORN, Alaya et  al.  2019) algorithms 
and others. Specifically, the GREENKHORN algorithm per-
forms coordinate-wise updates, where only a single row or 
column of the transport plan P is updated at each coordinate 
descent iteration. Instead of alternating between full row 
and column updates as in the classical Sinkhorn algorithm, 
GREENKHORN greedily selects the row or column that most 
violates the marginal constraints under a suitable divergence 
measure, and updates only that part to reduce the violation 
most efficiently. In contrast, Genevay et  al.  (2016) employed 
the stochastic averaged gradient method, which uniformly 
and randomly selects a data point (sample) from the empirical 
distribution to update the average gradient with respect to the 
dual variables in Equation (18). The SCREENKHORN method 
adapts the static screening test from sparse supervised learn-
ing to the dual formulation (18) of entropic-regularized OT. By 
imposing a threshold on the coordinates of the dual variables, 
SCREENKHORN reduces the optimization scale of the orig-
inal OT problem, directing computational resources towards 
the active variables.

Moreover, another relevant work is mini-batch OT and 
widely used in several situations Damodaran et  al.  (2018), 
Liutkus et  al.  (2019), and Tong et  al.  (2024). Mini-batch OT 
methods substitute the original large-scale OT computation 
in Equation  (4)/(5) with more computationally efficient pro-
cedures on subsets of the full dataset. This is achieved by 
splitting the problem into smaller sub-problems and aggre-
gating the results of these sub-problems to approximate the 

original transport plan. The statistical properties of mini-
batch OT have been explored by Fatras et al. (2020), Bernton 
et  al.  (2019), Sommerfeld et  al.  (2019), and Fatras, Zine, 
et al. (2021). The subsampling process can involve either uni-
form or random sampling, with or without replacement, as 
well as other sampling schemes under specific constraints, as 
discussed in Fatras, Zine, et al. (2021). However, the issue of 
misspecified mappings has been noted, wherein the transport 
plan estimated from mini-batch OT may produce transport 
mappings that deviate from the original solution of the OT 
problem (Nguyen and Luu 2022). To address this issue, Fatras, 
Séjourné, et  al.  (2021) proposed replacing the OT formula-
tion with the UOT formulation between empirical measures 
derived from mini-batches, while Nguyen and Luu  (2022) 
suggested the use of partial OT for transportation between 
mini-batches.

This review focuses on element-based sparsification strategies 
for entropic-regularized OT problems, analyzing them from both 
kernel-based and Hessian-based perspectives. These methods 
leverage the inherent sparse structures of the kernel and Hessian 
matrices, respectively, to improve computational efficiency. In 
contrast, methods such as partial-update OT and mini-batch OT 
reduce computational costs without explicitly considering the 
matrix structure, instead relying on selective sampling of data 
or coordinates based on specific criteria. Moreover, mini-batch 
OT involves sampling multiple subsets (mini-batches) from the 
original dataset and solving the corresponding sub-problems 
over these subsets. Each sub-problem can be treated as a sparse 
subsample, though the overall procedure merely splits the full 
dataset into smaller chunks. The computational efficiency of 
mini-batch OT is primarily derived from the parallelizability 
of these sub-problems, rather than from a reduction in the total 
computation across the entire procedure.

6   |   Conclusion

6.1   |   Summary

In this survey, we review recent sparsification techniques de-
veloped to improve the scalability of entropic-regularized OT 
and its variants. These methods are categorized into two major 
classes based on the formulation they operate on: (1) kernel-
based sparsification, which directly sparsifies the kernel matrix 
in the primal formulation, and (2) Hessian-based sparsification, 
which focuses on sparsifying the Hessian matrix in the dual 
formulation. Kernel-based methods reduce the per-iteration 
computational complexity while maintaining similar conver-
gence rates as the standard Sinkhorn algorithm. In contrast, 
Hessian-based methods are designed to accelerate convergence 
by leveraging Newton-type updates. They seek to alleviate the 
cubic computational burden of dense Newton steps through the 
sparsification analysis of the Hessian matrix. However, many of 
these methods currently lack rigorous analysis regarding algo-
rithmic accuracy and computational complexity.

We provide a summary of the accelerated methods discussed 
in our review in Table 1, which includes the category of each 
method, its computational complexity per iteration, and 
convergence rate. A “—” indicates that the method is not 
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discussed with respect to that particular aspect. The param-
eter � represents the precision tolerance, quantifying the dis-
tance between the original OT distance and the estimated OT 
distance obtained through each acceleration method. From 
the table, we observe that kernel-based methods maintain the 
same convergence rate as the original Sinkhorn algorithm, 
while reducing the computational complexity per iteration. 
In contrast, Hessian-based methods significantly improve the 
overall convergence rate of the original Sinkhorn algorithm, 
though they do not alter the computational complexity of each 
iteration. Thus, kernel-based and Hessian-based methods ac-
celerate the original Sinkhorn algorithm from complementary 
perspectives.

However, existing sparsity-driven Sinkhorn methods also face 
several limitations, which suggest potential directions for fur-
ther improvement. For instance, the Spar-Sink and Spar-GW 
methods primarily rely on sparsity patterns derived from mar-
ginal distributions under the assumption that the elements of 
the cost matrix are bounded by a constant, thereby neglecting 
the valuable structural information encoded in the cost matrix 
itself. Moreover, when applied to entropic-regularized UOT, the 
sampling probabilities depend on the regularization parameters 
(�, �), whereas for entropic-regularized OT, they are indepen-
dent of the regularization parameter. Hence, developing spar-
sification strategies that adapt to both the cost matrix and the 
regularization parameters could enhance robustness and effi-
ciency. In addition, these methods introduce stochasticity in the 
subsampling process, as Spar-Sink and Spar-GW perform im-
portance sampling on the kernel matrix only once. To mitigate 
this randomness, it may be beneficial to apply the subsampling 
procedure multiple times and aggregate the resulting sparse 
kernel matrices, which could lead to more stable and reliable 
approximations. Second, some sparsity-driven Sinkhorn meth-
ods rely on a large number of manually specified hyperparam-
eters. For example, the number of landmarks l in the k-means 
Nyström method, the parameters involved in the AND–OR con-
struction of LSH within the LCN-Sinkhorn approximation, and 
the shift parameter h as well as the density parameter � in the 
SPLR method all require careful tuning. Developing adaptive 

strategies that can dynamically adjust sparsity patterns accord-
ing to the cost structure or data geometry would alleviate the 
burden of extensive manual hyperparameter tuning.

Furthermore, all of the sparsity-aware Sinkhorn methods dis-
cussed in this paper are highly versatile and applicable to a 
wide range of learning tasks. Several sparsity-aware Sinkhorn 
methods have already been successfully applied across various 
domains. By replacing the original Sinkhorn distance computa-
tion with its sparsity-aware variants, these applications achieve 
more efficient training while preserving accuracy. For exam-
ple, LCN-Sinkhorn has been used for unsupervised word em-
bedding alignment and for graph distance regression on graph 
transport networks; Spar-GW can be directly applied to graph 
distance regression problems; and Spar-Sink has been used for 
tasks such as color transfer between images, echocardiogram 
similarity analysis, and approximating the Sinkhorn diver-
gence during the training of auto-encoders in Sinkhorn-based 
generative modeling. We are also eager to explore further ap-
plications of these methods, including Wasserstein barycenters, 
multi-marginal OT, and Wasserstein gradient flows, where 
replacing the original Sinkhorn or Wasserstein distance with 
sparsity-aware alternatives may lead to significant computa-
tional improvements.

6.2   |   Future Work

Future research can proceed along several promising directions. 
Building upon the limitations and potential improvements dis-
cussed in the previous subsection, we further outline several 
prospective avenues that may extend and enrich sparsification-
based OT methods.

First, extending these sparsification strategies to a wider range 
of OT problems, including Wasserstein barycenters (Rabin 
et al. 2011; Cuturi and Doucet 2014), multi-marginal OT (Haasler 
et al. 2021; Beier et al. 2023; Hu et al. 2025), and Wasserstein gra-
dient flows (Peyré 2015; Mokrov et al. 2021), could significantly 
broaden their applicability.

TABLE 1    |    Comparison of various accelerated Sinkhorn methods in terms of method category, per-iteration computational complexity, and 
convergence rate.

Method Method category Computational complexity Convergence rate

Sinkhorn — (n2) ̃(1∕�2)
Spar-Sink Kernel-based ̃(n) ̃(1∕�2)
Spar-GW Kernel-based (n2+�) —

LCN-Sinkhorn Kernel-based (n log(n) + nl2
) ̃(1∕�2)

SNS Hessian-based (n2) —

SSNS Hessian-based — (log(log(1∕�)))
SPLR Hessian-based (n2) (log(1∕�))
Stochastic OT Partial-update (n) —

GREENKHORN Partial-update (n2) ̃(1∕�2)
SCREENKHORN Partial-update — —
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Second, existing acceleration techniques primarily focus on the 
entropic-regularized OT problem. However, quadratically regu-
larized OT (Blondel et al. 2018; Lorenz et al. 2021) has gained in-
creasing importance in modern applications (Daniels et al. 2021; 
Xu and Cheng 2023) due to its ability to produce sparse transport 
plans, which are often more desirable than the dense transport 
plans obtained from entropic-regularized OT. The lack of sparsity 
in the latter can be problematic, particularly when the transport 
plan itself is of interest. Many studies have introduced quadratic 
regularization into various OT problems, including classical OT 
(Blondel et al. 2018), graph OT (Essid and Solomon 2018), UOT 
(Nguyen et al. 2023), and partial OT (Tran et al. 2025). Migrating 
existing acceleration techniques, such as sparsification strate-
gies and optimization methods (e.g., the Nyström method and 
Nesterov's method), to quadratically regularized OT is an exciting 
avenue for future work. Analyzing the properties of quadratically 
regularized OT, such as sparsity or low-rank structures in the ma-
trices involved in the optimization process, and exploring the fea-
sibility of applying acceleration techniques to this domain remain 
a promising research direction.

Third, combining different sparsification heuristics may yield 
further improvements. For example, Spar-Sink focuses mainly 
on sparsity patterns derived from marginal distributions, while 
LCN-Sinkhorn emphasizes spatial locality. Integrating both 
perspectives or enriching them with additional structural priors, 
such as low-rank approximations or graph-based constraints, 
may lead to more effective and generalizable sparsification 
frameworks. For example, similar to the LCN method, which 
first sparsifies the kernel matrix using hard-thresholding based 
on LSH and subsequently locally corrects the sparse kernel 
matrix using the Nyström method to capture local interactions 
more effectively, we are motivated to apply a similar approach. 
Specifically, we can propose locally correcting the sparse kernel 
or Hessian matrix generated by a specific sparsification strat-
egy using a low-rank approximation method. Alternatively, 
one could first perform a low-rank decomposition of the kernel 
matrix and then apply sparse sampling on the decomposed low-
rank matrix.

Finally, closer integration with application domains (e.g., com-
putational biology, graphics) and design of algorithms that 
account for task-specific constraints will help translate sparsifi-
cation advances into practical impact.
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