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Abstract 

Leverage scores quantify the influence of individual data points within a dataset and are 

widely used in subsampling methods to obtain a representative subsample. Numerous 

algorithms have been proposed to efficiently approximate leverage scores, thereby reducing 

the time complexity in model parameter estimation. In this paper, we study leverage scores in 

two-dimensional autoregressive models. We develop an efficient algorithm that accelerates 

the calculation of leverage scores by exploiting the unique structure of the covariate matrix 

specific to this model. Theoretically, we show that leverage scores can be approximated 

quickly and accurately by deriving an error bound between the approximated and true values. 

Numerical studies on synthetic datasets demonstrate the superior performance of the 

proposed algorithm. Additionally, when applying leverage scores in the two-dimensional 

autoregressive model to anomaly detection tasks, we achieve competitive detection results 

compared to state-of-the-art methods, with significantly reduced computational time. 

Furthermore, the efficient approximation of the leverage scores further reduces the time cost 

without loss of detection accuracy. 

Keywords: Order selection; Ordinary least squares (OLS); Parameter estimation; 

Subsampling 
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1 Introduction 

A two-dimensional (2D) autoregressive (AR) model predicts each pixel value in an image 

based on its surrounding pixels in both horizontal and vertical directions. 2D AR models have 

extensive applications in signal and image processing. For example, they have played a 

predominant role in texture analysis (Köppel et al., 2015; Oe, 1993; Lu and Xu, 1995), image 

restoration (Kokaram, 2004; Kaufman and Tekalp, 1991), signal compression (Zhang and 

Liang, 2017), cancer detection and classification (Zielinski et al., 2010), among others. 

Parameter estimation is a common challenge when applying 2D AR models. Several methods 

have been developed to address this, with the ordinary least squares (OLS) estimator and the 

Yule-Walker estimator being the most commonly used. Both estimators are consistent and 

asymptotically effective when the model structure is known and accurate. However, in 

scenarios where the data exhibit non-stationarity or when the true autocorrelation structure of 

the data is unknown, the OLS estimator is preferred over the Yule-Walker estimator, as it 

does not require strict stationarity assumptions and can more effectively handle data with 

varying autocorrelation structures. 

Despite its effectiveness, the OLS estimator suffers from a huge computational burden, 

especially when dealing with large images or high model orders. Specifically, the 

computation cost of the traditional OLS method is of the order 2 2( )O mnp q , where m n  is 

the image size and p, q are the orders of the 2D AR model in horizontal and vertical 

directions, respectively. If we let N mn  represent the number of pixels and ( )d O pq  

represent the number of parameters, the time complexity can be written as 2( )O Nd . 

The subsampling method is a powerful technique that can efficiently reduce this 

computational burden. The application of the subsampling method in large-scale data analysis 

has been widely explored in various fields, including linear regression (Drineas et al., 2011, 

2012; Ma et al., 2015; Ma and Sun, 2015; Meng et al., 2017; Wang et al., 2017; Zhang et al., 

2018; Li and Meng, 2020; Ma et al., 2022; Li et al., 2024a), generalized linear regression 

(Wang et al., 2018; Ai et al., 2021; Jun Yu and Zhang, 2022), quantile regression (Ai et al., 

2021), streaming time series (Xie et al., 2019, 2023), Gaussian mixture model (Feldman et 

al., 2011), nonparametric regression (Gu and Kim, 2002; Meng et al., 2020, 2022; Li et al., 

2024b), optimal transport(Li et al., 2023a, b; Hu et al., 2025), among others. 

In large-scale least squares regression, subsampling methods can be divided into optimal and 

randomized subsampling approaches (Li and Meng, 2020). Optimal subsampling methods 

select a deterministic subsample based on certain rules, such as A-, D- and E-optimality 

(Pukelsheim, 2006; Wang et al., 2019; Meng et al., 2021; Xie et al., 2023). Although these 

methods perform excellently in conventional linear regression, the unique structure of the 2D 

AR model limits their performance in the corresponding OLS estimation. On the other hand, 

randomized subsampling methods, which select subsamples based on data-dependent 

nonuniform sampling probabilities, such as the leverage subsampling method (Drineas et al., 

2006; Ma et al., 2015; Meng et al., 2017), have been shown to outperform simple random 

subsampling in numerous studies (Drineas et al., 2006; Drineas et al., 2012; Ma et al., 2015). 

Random projection-based techniques developed by Drineas et al. (2012) can efficiently 

approximate leverage scores, reducing the time cost from 2( )O Nd  to 3( log )O Nd N d  in 

conventional linear regression. Additionally, in specific situations, unique model structures 

can be utilized to further accelerate computation. For instance, in the 1D AR model, the 
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covariates matrix ,N dX  possesses the Toeplitz structure, which Eshragh et al. (2022) used to 

develop a leverage-based iterative algorithm that approximates the OLS estimator of the 1D 

AR model more efficiently, decreasing the time complexity to 4( log )O Nd d d . For more 

complex multidimensional streaming time series, Xie et al. (2023) proposed the Relaxed-LSS 

method, which substantially accelerates parameter estimation in VAR models and reduces the 

time complexity to  2( )O qN c d  with qN c N . 

In this paper, we propose a novel subsampling method for parameter estimation in the 2D AR 

model, reducing the average time complexity to 3( ( ) log( ))O mnpq pq pq , or 
3( log )O Nd d d  equivalently. To our knowledge, this is the first leverage score subsampling 

algorithm designed for large-scale 2D AR models. Furthermore, we develop a novel 

methodology that incorporates the 2D AR model framework for image analysis. Notably, in 

anomaly detection tasks, our approach demonstrates superior performance compared to 

current state-of-the-art techniques, while maintaining significantly improved computational 

efficiency. 

Methodologically, we first develop an iterative formula that can exactly calculate leverage 

scores of the 2D AR model with different orders. In each iteration, leverage scores are 

updated by solving the OLS problem for a sub-model. Due to the unique structure of the 2D 

AR model, leverage scores from the previous iteration can be used to approximate the OLS 

problem in the current iteration. Furthermore, we incorporate the leverage-based subsampling 

method and reduce the computational cost from 2( )O Nd  to 3( log )O Nd d d  per iteration. 

After obtaining leverage scores, parameters can be estimated using the same subsampling 

technique. Theoretically, we show that the resulting subsample-based estimator closely 

approximates the exact OLS estimator with high probability. 

When the true order of the 2D AR model is unknown, we can fit a series of 2D AR models 

using leverage scores obtained during the iterative process and select the optimal 2D AR 

model based on some criteria, such as the minimal mean square error (MSE). Specifically, 

the proposed method yields a total of d 2D AR models, with the number of parameters 

ranging from 1 to d. The time complexity for fitting these models is 2 4( log )O Nd d d , with 

an average time cost of 3( log )O Nd d d  per model. In contrast, the OLS method and the 

conventional order selection method have a total time complexity of 3( )O Nd  and an average 

time cost of 2( )O Nd  per model, respectively. Extensive simulations show that the proposed 

method yields superior performance compared to other mainstream competitors. 

We demonstrate the effectiveness of the proposed method by applying it to a real-world 

anomaly detection task, which has extensive application in object detection (Jang et al., 

2023), mineral surveys (Sun et al., 2023), military surveillance (Palm et al., 2022), and 

precision agriculture (Kang et al., 2017). We propose an innovative approach that utilizes 

standardized leverage scores derived from the 2D AR model as anomaly scores. The anomaly 

pixels are then detected by identifying those with leverage scores exceeding a certain 

threshold. Empirical results show that anomaly pixels can be efficiently identified using 

leverage scores of the 2D AR model. We evaluate anomaly detection performance using the 

area under the receiver operating characteristic curve (AUC). The results show that the 

leverage scores of the 2D AR model achieve the same detection accuracy as state-of-the-art 

anomaly detection methods while requiring much less computational time. In addition, the 
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proposed subsampling method can be applied to further accelerate the calculation of leverage 

scores while maintaining nearly identical accuracy. 

A related application is facial skin analysis using hyperspectral images. Different 

hyperspectral wavelengths of the skin encompass diverse layers of skin information (Seroul 

et al., 2016; Gevaux et al., 2021). These diverse pieces of information can be utilized to 

extract characteristics of interest, such as oxygen saturation, blood volume fraction, and 

melanin concentration (Seroul et al., 2016; Gevaux et al., 2019). We propose identifying 

regions of skin lesions through leverage scores of the 2D AR model. The results show that 

our method can efficiently distinguish pigmentation and acne on the skin using the 

wavelength band around 900 nm. 

The remainder of this paper is organized as follows. We start in Section 2 by introducing the 

preliminaries of the 2D AR model and leverage scores. In Section 3, we develop the iterative 

formula and provide the details of the main algorithm. The theoretical properties of the 

proposed estimators and the time complexity are presented in Section 4. We examine the 

performance of the proposed method through extensive synthetic datasets in Section 5. Real-

data analysis is provided in Section 6. Extensions, technical details, and proofs of theorems 

are relegated to the Appendix. 

2 Preliminaries 

In this paper, vectors and matrices are denoted by bold lower-case and bold upper-case letters 

(e.g., x  and X ), respectively. All vectors are assumed to be column vectors. Three-

dimensional tensors are represented by calligraphic letters (e.g., ). The third dimension of 

tensors is referred to as a channel, that is, m n c   consists of c channels, each of which is 

a matrix of size m n . The condition number of the tensor  is defined as ( ) : ( )  X , 

where mn cX  is constructed such that , ( , , )in j n k i j k  X , and ( ) X  is the condition 

number of the matrix X . Table 1 lists the tensor and matrix operations used throughout this 

paper. 

In short, we use  to represent the element-wise product between matrix and tensor along the 

first two dimensions. The result of   is a matrix whose ( , )i j th element is the Frobenius inner 

product of the ith channel of the front tensor and the jth channel of the behind tensor. The 

result of  is a matrix whose ( , )i j th element is the inner product of the behind vector and 

the ( , )i j th vector of the front tensor. Here we regard a matrix as a tensor whose third 

dimension is 1 and a vector as a matrix whose second dimension is 1.  

2.1 Two-dimensional autoregressive model 

A two-dimensional time series ,{ | 0, 1, 2, ; 0, 1, 2, }i jy i j         is called (weakly) 

stationary, if the mean ,[ ]i jy  is independent of subscripts i, j, and the auto-covariance 

, ,Cov( , )i j i u j vy y    depends only on the lags u, v for any integers i, j, u, v. 

Definition 1 (2D AR Model). 
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A stationary two-dimensional time series  , | 0, 1,i jy i    2, ; 0, 1, 2,j       follows a 

2D AR model with order ( , )p q , denoted by 2D AR ( , )p q , if  

, , , ,

( , )

,i j u v i u j v i j

u v L

y y  



   (1) 

{ , 1, , } { , 1, , } /{(0,0)},L p p p q q q           

where ( , )u v  denotes the plane offset between response and predictors, L is the support set, 

and ,{ }i j  is mutually uncorrelated Gaussian white noise with mean zero and constant 

variance 
2 .  

Definition 1 indicates that each point ,i jy  is influenced by the points within a 

(2 1) (2 1)p q    rectangle centered at ,i jy . Parameters ,{ }u v  quantify the influence at each 

location within this rectangle. While the support region is rectangular by default, it can be 

customized by selecting an appropriate support set L. One can refer to Choi and Politis (2007) 

for various support regions, including causal and non-causal 2D AR models. 

Each 2D AR ( , )p q  model contains (2 1)(2 1) 2p q    unknown parameters: the order ( , )p q

, (2 1)(2 1) 1p q    coefficients ,{ }u v , and the variance of the white noise 
2 . Among 

these, the coefficients ,{ }u v  are the most critical, as they directly determine the structure of 

the 2D AR model. Therefore, we first focus on estimating the coefficients ,{ }u v  through an 

efficient approximation of leverage scores. Later, we will discuss how the order ( , )p q  can be 

estimated along with the leverage score approximation.  

Let ,{ | 1,2, , ; 1,2, , }i jy i m j n     be a realization of the 2D AR ( , )p q  model, where the 

order ( , )p q  is known. The relationship given in equation (1) holds for 

1, , ; 1, ,i p m p j q n q        . The equation (1) can be represented in vector form as 

 y X eβ  by arranging the response and predictors in a specific order (e.g., row-first or 

column-first). In this way, the OLS estimator of β , i.e., the concatenated form of ,{ }u v , can 

be derived in the same way as linear regression. Nonetheless, this method destroys the unique 

spatial structure of the 2D AR model, which can be crucial for enhancing the efficiency of 

leverage score approximation and parameter estimation. 

To fully exploit the unique structure of the 2D AR model, we reformulate it in tensor form as 

, Y Eβ  (2) 

where ( 2 ) ( 2 )m p n q  Y  with , ,i j i p j qY y   , ( 2 ) ( 2 )m p n q  E  with , ,i j i p j qE    , 

( 2 ) ( 2 ) | |m p n q L     with ( 2 ) ( 2 )

, ,(:,:, ) { | }
k k

m q n q

i j i u j vk X Y  

   X , and | |Lβ  with 

,k kk u v  . Tensor calculus facilitates the derivation of efficient leverage score 

approximations and provides a more intuitive understanding. The OLS estimator of (2) can be 
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obtained either by rewriting the result from multiple linear regression into tensor form or by 

minimizing the sum of squared residuals, that is, 

1( ) ( ).  Yβ  (3) 

The visualization of the formula is provided in Figure 1. 

A significant extension of the autoregressive (AR) model is the vector autoregressive (VAR) 

model, which generalizes the scalar operations in AR models to vector spaces, providing a 

powerful framework for analyzing multidimensional time series (Xie et al., 2019, 2023). 

Although the VAR model can be expressed in a tensor form analogous to Equation (2), it 

differs from the 2D AR model in two key respects. First, while the response in the VAR 

model can be written as a matrix, only the time dimension is extendable, with the other 

dimension fixed as the length of the vector. In contrast, the 2D AR model has two time 

dimensions, both of which can be extended arbitrarily. Second, the parameter for each lag is a 

matrix in the VAR model but a scalar in the 2D AR model. After reparameterizing to tensor 

form, elements in the response matrix of the 2D AR model share the same parameters, 

whereas in the VAR model, elements in different rows are associated with different row 

vectors of the parameter matrix. 

2.2 Leverage score 

Leverage score measures the impact of individual data points in a dataset. In 1D models, the 

leverage score of the ith data is defined as ˆ( ) /i il i y y    (Eshragh et al., 2022). Specifically, 

in a linear model, we have ,( ) i il i H , where ,i iH  is the ith diagonal element of the hat matrix 

1( )T TH X X X X . 

Leverage scores are widely used in subsampling methods to acquire representative 

subsamples, particularly when dealing with large-scale datasets (Ma et al., 2015, 2022; 

Derezinski and Warmuth, 2017; Derezinski et al., 2018). By subsampling according to 

leverage scores, points are selected with probabilities proportional to their influence, leading 

to more accurate estimates than random sampling. This approach significantly reduces the 

data size, making the computation cost affordable while maintaining reliable parameter 

estimation. 

However, calculating exact leverage scores has the same time complexity as estimating 

parameters on the entire dataset. The high computational cost makes it infeasible to use exact 

leverage scores to accelerate parameter estimation. Therefore, we propose a method to 

approximate the leverage scores more efficiently, thereby reducing the overall time 

complexity of parameter estimation. The details will be discussed in the next section.  

For a 2D AR model, the leverage score at position ( , )i j  can be defined as , ,
ˆ( , ) /i j i jl i j Y Y  

. Given that Y β , combined with the formula of β  in (3), we can express the leverage 

score as 

1( , ) ( , ,:) ( ) ( , ,:),Tl i j i j i j   (4) 
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where ( , ,:)i j  represents the column vector along the third dimension corresponding to the 

position ( , )i j .  

3 Main algorithm 

In this section, we exploit the unique structure of the data tensor induced by the 2D AR 

model to derive the exact recursive formulation of leverage scores, and then develop a fast 

algorithm to approximate leverage scores efficiently. 

3.1 Exact leverage scores 

We first introduce some notations in Definition 2. 

Definition 2 (Sub-model). 

For 1, ,| |t L  , we define the sub-model 1:t Y Eβ , where ( 2 ) ( 2 )

1:

m p n q t

t

     

represents a sub-tensor consisting of the first t channels of , and ( 2 ) ( 2 )m p n q

t

    

represents the t-th channel of . The leverage score ( , )tl i j  (or its normalized form ( , )t i j ) 

for the ( , )i j th point in this sub-model is defined as  

1

1: 1: 1: 1:( , ) ( , ,:) ( ) ( , ,:),

( , )
( , ) ,

T

t t t t t

t
t

l i j i j i j

l i j
i j

t


 


 

for 1, , ; 1, ,i p m p j q n q        .  

The following proposition showcases how the leverage scores associated with a 2D AR ( , )p q  

model can be recursively computed using those arising from a sub-model. 

Proposition 1 (Exact Leverage Score Computations). 

The leverage scores for a 2D AR ( , )p q  model can be computed recursively as follows:  

2

1 2

( , ,1)
( , ) ,

(:,:,1) F

i j
l i j 

( (
 (5) 

2

1
1 2

1

( , )
( , ) ( , ) , 2, ,| |,t

t t

t F

i j
l i j l i j for t L





   
R

R( (
 (6) 

where tR  is the regression residual of recursive model 1:( 1)t t Eβ . Specifically,  

1

1 1:( 1) 1:( 1) 1:( 1)( ) ( ),t t t t t



     β  (7) 

1 1:( 1) 1.t t t t   R β  (8) 
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Proposition 1 shows that leverage scores of the 2D AR model (2) can be exactly calculated 

through recursive updates (6) applied on tensor channels, starting from the initial condition 

(5). At each iteration, we regress the tth channel of  on its previous ( 1)t   channels and 

update the leverage scores using the regression residuals through (6). 

Although Proposition 1 is appealing at first glance, two major challenges render it 

impractical: the need for exact leverage scores of sub-models, and the requirement of exact 

residuals from corresponding OLS estimations. In the context of big data, calculating either 

exactly would negate the benefits of subsampling. 

To address these issues, we first approximate the regression residuals through subsampling 

and then use these approximations to estimate the corresponding leverage scores. This 

approach allows us to rapidly obtain approximate leverage scores, with guaranteed relative 

error bounds, as discussed in Section 4. 

3.2 Approximate leverage scores 

One crucial property of leverage scores in AR models is their independence from the 

response value, as shown in (4). This property ensures that leverage scores of the recursive 

model 1:( 1)t t Eβ  are identical to those of the sub-model 1:( 1)t Y Eβ . 

Therefore, 1( , )tl i j  is exactly the leverage score of the recursive model 1:( 1)t t Eβ . 

Residual approximation. To approximate the residuals in (8), one approach is to subsample 

the predictor tensor 1:( 1)t  and solve the corresponding reduced OLS problem. Specifically, 

we consider the masked data tensor 

1:( 1) 1:( 1) ,t t  S  

where 
m nS  is a mask matrix with s elements equal to 1 and the others equal to 0. These s 

nonzero elements are chosen randomly without replacement according to probabilities 

1 1{ ( , ) ( , ) / ( 1)}t ti j l i j t    . Similar to the sampling matrix in basic leverage subsampling, 

mask S  serves the same purpose to represent the indexes of selected samples here. Using 

1:( 1)t , the approximated parameter 
1t

β  is calculated as 

1
1:( 1) 1:( 1) 1:( 1)1

( ) ( ),t t t tt


  

  β  (9) 

where t t S . Figure 2 visualizes the process of subsampling and parameter 

approximation. The residuals are then approximated by 

1 1:( 1) 1
.t t t t  

 R β  (10) 

Leverage score approximation. Then, we can replace the exact residuals in (6) by the 

approximated counterparts (10) to approximate the leverage scores. Moreover, in the next 

iteration, we can continue to subsample the data tensor and response matrix using the updated 

leverage scores, thus generating further approximated residuals. In this way, beginning with 
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an initial leverage score 1l , we can recursively compute the approximations of leverage 

scores 2 | |
ˆ ˆ, , Ll l . The formal process is described in Proposition 2. 

Proposition 2 (Two-dimensional Fully-approximate Leverage Scores). 

For an 2D AR ( , )p q  model with , 0p q   , the fully-approximate leverage scores are defined 

by the following equation  

1

2
1

1 2
1

( , ), 1,

ˆ ( , ) : ( , )ˆ ( , ) , 2,
tt

t

t F

l i j for t

l i j i j
l i j for t










 
 



R

R‖ ‖

 (11) 

where  

1 1:( 1) 1
: ,t t t t  
 R β  (12) 

1
1:( 1) 1:( 1) 1:( 1)1

: ( ) ( ),t t t tt


  

  β  (13) 

and 1:( 1)t  and t  are respectively the reduced data tensor and response matrix sampled 

from the recursive model 1:( 1)t t Eβ , according to the probability  

1
1

ˆ ( , )
ˆ ( , ) 1, , ; 1, , .

1

t
t

l i j
i j for i p m p j q n q

t
 

         


 (14) 

Based on the above discussion, we introduce the 2D AR leverage score approximation 

algorithm, outlined in Algorithm 1. To our knowledge, this is the first leverage score 

subsampling algorithm designed for large-scale 2D AR models. The theoretical results and 

some details of Algorithm 1 will be discussed in the next section. The support set L is 

provided in Algorithm 1, and the procedure for order selection—when the order is 

unknown—is comprehensively detailed in the “Order Selection” section of the Appendix. 

Algorithm 1 Efficient 2D AR leverage score approximation 

Input:  

- Two-dimensional data Y ;  

- Model order ( , )p q  and support set L;  

- Constant parameters 0 1  , and 00 1  .  

Step 1. Construct the predictor tensor .  

Step 2. Calculate the initial leverage score 1l . Set 
1 1l̂ l  and 2t  .  

while | |t L  do  
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Step 3. Set 0 / | |L   and 1 ( )h O t   . Set 2( log( / ) / ( ))s O t t h  .  

Step 4. Subsample 1:( 1)t  and t  along the first two dimension with probabilities 1
ˆ{ }t   defined by 

(14) and subsample size s, resulting in the reduced data tensor 1:( 1)t  and response matrix t .  

Step 5. Compute the approximated OLS estimator 
1t

β  according to (13).  

Step 6. Update leverage scores as in (11) to get ˆ
tl .  

Step 7. 1t t    

end while  

Step 8. Compute the approximated OLS estimator | |L
β  according to (13) by replacing t  with Y .  

Output: Leverage scores | |
ˆ
Ll ; estimated parameters | |L

β .  

4 Theoretical results 

In this section, we study the theoretical properties of the leverage scores obtained from 

Algorithm 1. We show that our approximations of leverage scores possess relative error 

bounds with high probability. Additionally, we discuss the computational complexity of 

Algorithm 1, showing that it can fit a 2D AR model with an average computational 

complexity of 3( log( ))O Nd d d , where N is the number of pixels and d is the number of 

parameters. All proofs of this section are presented in the Appendix. 

We derive the relative error bounds for individual leverage scores and estimated parameters 

obtained in Algorithm 1. The results are summarized in Theorem 1 below. 

Theorem 1 (Relative Errors for Fully-approximate Leverage Scores). 

For the two-dimensional fully-approximation leverage scores and estimated parameters 

derived from Algorithm 1, we have with probability at least 01  ,  

2

1 1:

ˆ| ( , ) ( , ) |
(1 3 ( ))( 1) ,

( , )

t t
t t

t

l i j l i j
t

l i j
  


    (15) 

,t t tt  β β β  (16) 

where  

2

1:( ) 1,t t     (17) 

1:( )t  is the condition number of tensor 1:t , and (0,1]  is the fraction that 1t  can be 

represented by 1:t , that is, 1: 1: /t t F t F  β( ( ( ( .  
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Theorem 1 shows that the relative errors of fully-approximation leverage scores and 

estimated parameters from Algorithm 1 can be bounded with high probability. Besides, 

Theorem 1 implies the misestimation factor h (cf. Lemma 1 in Supplementary Materials) for 

the two-dimensional fully-approximation leverage scores is 1 ( )O t . To obtain an overall 

success probability of 01  , the failure probability of each iteration is set as 

| |
0 01 1 ~ ( / | |)L O L     . Combining Lemma 1 with this result leads to the choice of 

subsample size s in each iteration, as Step 3 in Algorithm 1. 

Theorem 2 gives the computational complexity of Algorithm 1. 

Theorem 2 . 

For an input 2D AR ( , )p q  model, let | |d L  represents the number of parameters and 

N mn  represents the number of pixels. The total time complexity of Algorithm 1 to fit d 

models is  2 4 2log /O Nd d d  . The average time complexity to fit each model is 

 3 2log /O Nd d d  .  

Given two-dimensional image data Y , the best order with respect to a 2D AR model is 

usually unknown at first. To obtain an appropriate order, a common approach is to traverse 

all possible orders and choose the best order according to specific criteria, such as the Akaike 

information criterion (Akaike, 1974; Aksasse and Radouane, 1999), the Bayesian information 

criterion (Schwarz, 1978). This order selection procedure involves an independent model 

fitting for each order, which is time-consuming when using an OLS estimator. For instance, 

for an input 2D AR ( , )p q  model with | |d L  parameters, the order selection procedure 

involves d times OLS with the total time complexity 3( )O Nd  and the average time 

complexity 2( )O Nd  for each model. However, Algorithm 1 can obtain all model fitting 

results with order up to ( , )p q  in one operation with time complexity as in Theorem 2. To 

acquire all the model fitting results, we only need to use the leverage scores obtained in each 

iteration to fit the 2D AR model using the leverage-based subsampling method, and the 

precision of the fitting result is guaranteed by Theorem 1. In this approach, Algorithm 1 

reduces the average time complexity for model fitting from 2( )O Nd  to  3 2log /O Nd d d 

, improving computational speed efficiently when N is much larger than d. 

In practice, we recommend selecting a subsample size ( )
N

s O
d

  to strike a balance between 

approximation accuracy and computational efficiency. Generally, a larger subsample size 

leads to more accurate parameter estimation. When s is less than ( )
N

O
d

, the average 

computational cost,  2O Nd sd , is dominated by the ( )O Nd  term. Therefore, choosing 

( )
N

s O
d

  maximizes approximation accuracy while keeping the average time complexity at 

( )O Nd . 

5 Simulation results 
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To evaluate the performance of the proposed subsampling method, we compare Algorithm 1 

(LEV-appr) with uniform subsampling (UNIF), full-sample OLS, and the exact leverage-

based subsampling method using the leverage scores calculated in Proposition 1 (LEV-exact) 

regarding both the estimation accuracy and computational efficiency. All the methods are 

implemented in Python. 

We generate synthetic large-scale two-dimensional image data from 2D AR models with 

different sizes and lags, and then estimate parameters for each dataset using the methods 

mentioned above. 

Considering causality, the images are generated sequentially from left to right and top to 

bottom using a causal version of the 2D AR model. In a causal 2D AR model with order 

( , )p q , the set L in Definition 1 is replaced by 
* { , 1, ,0} { , 1, ,0}/{(0,0)}L p p q q          , while all properties of the original 2D AR 

model are retained. 

Given the order ( , )p q , we generate model parameters for the 2D AR model from three 

distinct distributions: 

• D1: ( ) *

, ( 1) ( ) / ( ) 0.02, ( , )u v

u v u v p q for u v L        ,  

• D2: 
. . .

*

, 2 2

1
~ (0, ), ( , )

25

i i d

u v N for u v L
p q

  ,  

• D3: 
. . .

*

,

1 1
~ ( , ), ( , )

2( 1)( 1) 2( 1)( 1)

i i d

u v Unif for u v L
p q p q

  
   

,  

where 2( , )N    represents normal distribution with mean   and variance 
2 , ( , )Unif a b  

represents uniform distribution on interval ( , )a b . 

After generating the parameters, we initialize the left p columns and top q rows of the 2D AR 

model and generate the remaining data as follows: 

*

, ,

, , , ,

( , )

max( , ) , ,

, ,

i j i j

i j u v i u j v i j

u v L

y i j for i p or j q

y y for i p and j q



  



   

     (18) 

where 
. . .

, ~ (0,1)
i i d

i j N  and 
. . .

2

, ~ (0, )
i i d

i j N   with 0.1  . 

We analyze the effect of three key factors on parameter estimation: the number of 

parameters, the subsample size, and the size of the time series. We adjust these factors using 

the following three settings: 

• S1: Fixed time series size 1000 1000 , fixed order (5,5) , with subsample size varying 

from 100 to 10000.  
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• S2: Fixed time series size 1000 1000 , fixed subsample size 10000, with the number of 

parameters varying from 8 (i.e., order (2,2)) to 63 (i.e., order (7,7)).  

• S3: Fixed order (5,5) , fixed subsample size 10000, with time series size varying from 

150 150  to 1000 3000 .  

For each setting and each parameter, we repeat the process of data generation and parameter 

estimation 20 times, recording the average MSE of parameter estimation and the average time 

cost, respectively.  

Figures 3 and 4 show the results under various settings and distributions. In Fig. 3, each row 

represents a particular setting (S1–S3), and each column corresponds to a specific 

distribution of parameters (D1–D3). The three columns in Fig. 3 (or Fig. 4) show MSE (or 

time cost) versus the number of parameters d, subsample size s, and time series size N, 

respectively. Note that for the proposed LEV-appr method, the subsample size s refers to the 

size used in each iteration of Algorithm 1. 

Three significant observations emerge from Figs. 3 and 4. First, in Fig. 3, across all settings, 

the MSE of LEV-appr is nearly identical to that of LEV-exact, demonstrating the accuracy of 

our approximation. In contrast, Fig. 4 shows that the computational cost of LEV-appr is 

significantly lower than that of LEV-exact, highlighting its efficiency. Compared to uniform 

sampling, the proposed method consistently achieves a much smaller MSE while spending 

almost the same time. Furthermore, as seen in the first image of Fig. 4, the computational 

time of LEV-appr grows more slowly than that of full-sample OLS as the number of 

parameters increases. This implies that the proposed method can ensure estimation accuracy 

with a much lower computational cost. 

Second, in the second row of Fig. 3, we observe that as the subsample size increases, the 

MSE of the proposed method decreases rapidly, approaching the accuracy of full-sample 

OLS at a subsample size of 10000. This improvement outpaces that of uniform subsampling, 

which struggles to match OLS accuracy even at large subsample sizes. 

Third, referring to the third row of Fig. 3, the MSE of uniform subsampling increases as the 

time series size increases, whereas the MSE of the proposed method shows a decreasing 

trend. This observation suggests that the approximated leverage scores can effectively capture 

valuable information in large-scale datasets to enhance estimation accuracy. 

6 Real data example 

In this section, we apply the proposed method to two real-world tasks to demonstrate its 

effectiveness. We first propose utilizing standardized leverage scores of the 2D AR model as 

anomaly scores to distinguish anomaly pixels of an image. Subsequently, we extend this 

method to facial images to identify regions of skin lesions. Results showcase that our 

proposed method outperforms other competitors in both detection accuracy and 

computational efficiency. 

6.1 Anomaly detection 
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In this section, we showcase how leverage scores of the 2D AR model can be utilized in 

anomaly detection tasks and outperform existing methods. We consider two hyperspectral 

images manually extracted from large images downloaded from the Airborne Visible/Infrared 

Imaging Spectrometer (AVIRIS) Web site 
1
 , with their pseudo-grayscale representations 

shown in the first column of Fig. 5. The first hyperspectral image, of size 100 100 191  , 

was captured over the Gulfport airport area and has three abnormal shadows 
2
 . The second 

hyperspectral image, of size 100 100 189  , was taken over the San Diego airport area and 

contains three aircraft regarded as abnormal objects. Both images have manually obtained 

reference maps, on which the abnormal pixels are labeled, as shown in the second column of 

Fig 5. 

The goal of anomaly detection is to point out anomaly pixels of hyperspectral images as 

accurately as possible. A typical method is to calculate an anomaly score of each pixel and 

choose a threshold to distinguish abnormal from normal pixels. Given that the leverage score 

quantifies the impact of a single data point in the model, and outliers typically exhibit high 

leverage scores, using leverage scores from the 2D AR model offers a natural way to assess 

pixel abnormality. 

To apply the 2D AR model to hyperspectral images, we first average the hyperspectral cube 

on the third dimension to get a two-dimensional image. Then we fit a 2D AR model as in 

Definition 1 with order (1,1)  and calculate the leverage score of each pixel. Since the 

leverage score of one pixel is only related to its covariates, pixels around the abnormal pixel 

also tend to have high leverage scores. To refine this, we additionally perform a min pooling 

step, which replaces each pixel’s leverage score with the minimum score of its neighboring 

pixels. This adjustment better reflects the true degree of pixel abnormality. Ultimately, the 

pooled leverage scores are standardized and used as anomaly scores. 

To evaluate the performance of the proposed leverage approximation method (LEV-appr), we 

compare it with exact leverage-based subsampling (LEV-exact) and two other hyperspectral 

anomaly detection methods. One is the well-known Reed–Xiaoli (RX) detector (Reed and 

Yu, 1990), which is a classical and widely used baseline in anomaly detection experiments. 

The other is the state-of-the-art LARTVAD technique (Sun et al., 2023), which has 

demonstrated superior performance compared to most previously proposed anomaly 

detection methods on various datasets. 

Figure 5 illustrates the anomaly scores obtained from different anomaly detection methods 

for two hyperspectral images. Figure 6 shows the receiver-operating characteristic (ROC) 

curves for anomaly detection, and Table 2 summarizes the area under the curve (AUC) and 

the computational time for each method. 

From Fig. 5, we find that abnormal pixels have significantly higher leverage scores, making 

them easily distinguishable from normal pixels. Besides, the approximated leverage scores 

have almost the same performance as exact leverage scores. In contrast, for RX, the 

difference in anomaly scores between normal and abnormal pixels is not obvious. For 

LARTVAD, the anomaly scores of normal pixels (i.e., brightness of background) are 

relatively high, weakening the distinction between normal and abnormal pixels, especially in 

the right lower corner of the San Diego image. From Fig. 6 and Table. 2, we observe that 

exact and approximated leverage scores have the best anomaly detection performance while 

approximated leverage scores also obtain the best time efficiency. In general, anomaly 
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detection through leverage scores consistently outperforms its competitors in both detection 

accuracy and time efficiency. 

6.2 Facial skin analysis 

Hyperspectral imaging is gaining increasing attention in dermatology and cosmetics due to its 

fast and noninvasive image acquisition, no side effects, and detailed spatial and spectral 

information. Previous studies have demonstrated that different wavelengths of skin 

hyperspectral encompass diverse layers of skin information (Seroul et al., 2016; Gevaux et 

al., 2021). For instance, hyperspectral images can be utilized to generate maps depicting skin 

absorption properties like oxygen saturation, blood volume fraction, or melanin concentration 

through an optical-based model (Seroul et al., 2016; Gevaux et al., 2019). One fundamental 

task in dermatology is skin lesion area identification, which is essential and critical for 

subsequent analysis. 

We consider a facial skin hyperspectral image dataset (Ng et al., 2023) containing 330 

hyperspectral cubes from 51 subjects, each of which covers a wide range of wavelengths 

from the visible (VIS) spectrum (400nm–700nm) to near-infrared (NIR) spectrum (700nm–

1000nm). Each hyperspectral cube has dimensions of 1024 1024 62  , with 31 bands for 

VIS, and 31 bands for NIR. 

We propose identifying skin lesion regions through leverage scores of the 2D AR model. We 

select three skin regions simultaneously containing pigmentation and acne, which can be seen 

clearly from the visible light RGB pseudo-color images. We focus on the wavelength band 

around 900nm for these regions and calculate the leverage scores of corresponding 2D AR 

models, using both the exact formulation and Algorithm 1. The results are compared with the 

RX and LARTVAD anomaly detectors mentioned in Section 6.1. 

Figure 7 displays the pseudo-color images and anomaly scores for the three skin regions. 

Both pigmentation and acne can be seen clearly in pseudo-color images. However, due to 

strong noise, the RX detector and LARTVAD fail to perform effectively. In contrast, the 

leverage scores in the forth and fifth columns imply the abnormal degree of each pixel when 

fitting a 2D AR model on the 900nm wavelength band of hyperspectral cubes. Acne is 

emphasized by high leverage scores, while pigmentation, despite noticeable in the pseudo-

color images, appears less prominent. In this manner, acne can be efficiently identified by 

selecting pixels with leverage scores above a certain threshold. Additionally, leverage scores 

approximated by Algorithm 1 closely match those obtained from the exact method, further 

validating the effectiveness of Algorithm 1. 

7 Discussion 

In this paper, we propose a novel approach to accelerate leverage score computation and 

parameter estimation in the 2D AR model. Specifically, we derive a recursive formula for 

leverage scores in 2D AR models and develop an efficient algorithm to approximate them. 

Theoretically, we establish an error bound for these approximations and analyze the time 

complexity for the proposed method. Extensive experiments on synthetic datasets 

demonstrate the accuracy and efficiency of our approach. Moreover, we apply the method to 

an anomaly detection dataset and a hyperspectral skin dataset, showing its practical utility in 

achieving competitive results with significantly less computational burden. 
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For both anomaly detection and facial skin analysis, although our approach outperforms 

competitors in terms of detection performance and computational efficiency, it relies on the 

fact that information of these hyperspectral can be compressed into a two-dimensional image. 

In the case of anomaly detection, anomaly pixels still exhibit anomalies on images obtained 

by averaging the hyperspectral data along the third dimension. For facial skin analysis, we 

select NIR channels—guided by prior knowledge—that are particularly effective in 

distinguishing acne from pigmentation. Without these prerequisites, the anomaly detection 

performance using the leverage scores of the 2D AR model would be reduced. This limitation 

is inherent to the 2D AR model, which is designed solely for processing two-dimensional 

images. 

Three-dimensional (3D) AR models and two-dimensional (2D) vector autoregressive (VAR) 

models offer a promising path to overcoming the inherent limitations of the 2D AR model 

and effectively processing 3D data. Both the 3D AR and 2D VAR models can be naturally 

applied to 3D datasets, capturing significantly richer information than the 2D AR model. For 

example, when dealing with hyperspectral data, fitting a 3D AR model enables us to obtain 

leverage scores for each pixel across all channels, thereby pinpointing both the spatial 

location and the specific wavelength of an anomaly, which aids in determining both its 

position and type. For the 2D VAR model, each pixel is treated as a vector containing 

information from all channels, making its leverage scores highly responsive to any abnormal 

shifts and thereby enabling precise anomaly detection. However, the huge computational 

burden imposed by the large number of parameters greatly limits the practicality of these two 

models. Our future work will mainly focus on improving the computational efficiency of 

fitting the 3D AR model and the 2D VAR model, aiming to apply them effectively in 

practical data processing scenarios. 

SUPPLEMENTARY MATERIAL 

Appendix: Contains complete proofs of the theoretical results of the proposed method. 

Contains sections discussing order selection and hypothesis test for the proposed method. 

(appendix.pdf, a pdf file)  

Code: Contains code that implements the proposed method and reproduces the numerical 

results. A readme file describing the contents is included. (code.zip, a zip file)  
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Figure 1: An illustration of the 2D AR model in tensor form. Different colors represent 

different values in tensor(matrix, vector). 
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Figure 2: An illustration of parameter approximation by subsampling. The non-zero elements 

of each tensor(matrix, vector) are labeled with non-transport colors. Step 1 illustrates the 

subsampling process through mask S . Step 2 illustrates the parameter approximation. 
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Figure 3: Comparison of MSE under different settings (rows) and distributions (columns). 

MSE is plotted versus the number of parameters, subsample size, and time series size, 

respectively. Vertical bars represent the standard errors.  
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Figure 4: Total time cost of order selection and parameter estimation versus the number of 

parameters, subsample size, and time series size, respectively. 
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Figure 5: Two hyperspectral images and their detection maps obtained by different methods. 

The top row is Gulfport, and the bottom row is San Diego.  
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Figure 6: ROC curves of different methods on two hyperspectral images.  
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Figure 7: Pseudo-color and anomaly scores of three skin regions. Each row corresponds to a 

specific skin region. The first column shows the pseudo-color images from the VIS 

hyperspectral cubes. The remaining columns display the anomaly scores obtained from RX, 

LARTVAD, LEV-exact, and LEV-appr, respectively.  
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Table 1: Summary of tensor and matrix operations, where , m nX Y , 

1 2,m n c m n c     , and 1cy . 

Operation Notation and description 

Frobenius inner product  , ,

1 1

, :
m n

F i j i j

i j

X Y
 

  X Y , 2 : ,F F  X X X   

Matrix element-wise product  
, , ,: { | , [ ], [ ]}m n

i j i j i jM X Y i m j n    X Y M   

Tensor-matrix element-wise 

product 
 2

,: { | ( , ,:) ( , ,:), [ ], [ ]}m n c

i ji j X i j i m j n     X   

Tensor-matrix product  1

1: { | (:,:, ), , [ ]}c

i Fa i i c      Y a Y   

Tensor-tensor product  1 2

, 1 2: { | (:,:, ), (:,:, ) , [ ], [ ]}c c

i j FA i j i c j c       A   

Tensor-vector product  
,: { | ( , ,:), , [ ], [ ]}m n

i jA i j i m j n      y A y   

 

Table 2: AUC and time cost (seconds) of different methods on two hyperspectral images. 

  
RX LARTVAD LEV-exact LEV-appr 

AUC Gulfport 0.950 0.994  0.998  0.998  

 
San Diego 0.939 0.969 0.983  0.981  

Time cost Gulfport 4.021 26.322 0.243 0.050  

 
San Diego 3.895 26.543 0.304 0.086  
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