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The process of aligning images from different modalities, a.k.a. multimodal image registration, is a crucial task
in various fields such as medical imaging, remote sensing, and computer vision. Traditional matching methods
encounter difficulties in handling nonlinear appearance distortions and partial overlaps across modalities. In this
paper, we propose a novel and robust multimodal image registration method, referred to as Iterative Optimal
Transport (IOT), that formulates registration as a sequence of optimal transport problems. Specifically, by repre-
senting images with edge points, we propose a regularized unbalanced optimal transport criterion that robustly
aligns structural information across modalities. Unlike prior approaches based on one-shot OT matching, IOT
alternates between computing the transport plan and refining the estimated transformation, allowing for pro-
gressively improved alignment with theoretical convergence guarantees. Evaluations of three different types of
multimodal image datasets, including brain and retina images, demonstrate the superior performance of IOT
over state-of-the-art competitors in various scenarios. These results show the effectiveness and robustness of IOT

in multimodal image registration.

1. Introduction

Integrating multimodal images can provide complementary infor-
mation and enhance the precision of decision-making processes. For
instance, in the medical field, the combination of anatomical imag-
ing (e.g., computed tomography (CT) and magnetic resonance imaging
(MRI)) and functional imaging (e.g., functional MRI (fMRI) and single-
photon emission CT (SPECT)) offers a comprehensive view of body struc-
tures and functions, critical for accurate tumor contouring in radiother-
apy. In computer vision, visible and infrared images provide distinct
perspectives by capturing reflected light and thermal radiation, respec-
tively. Combining these two image types is beneficial in wide applica-
tions such as fever screening and building inspections [1]. However,
effective use of multimodal information requires precise spatial align-
ment of images of the same or similar scenes from distinct modalities.
This problem is known as multimodal image registration, which serves
as a fundamental prerequisite for downstream analyses, including image
fusion, object detection, and video tracking, among others [2,3].

Despite its importance, multimodal image registration poses signif-
icant challenges. Beyond addressing typical geometrical deformations
in general image matching problems, it is necessary to address intrinsic

differences in imaging mechanisms across modalities. These differences
often lead to large nonlinear appearance distortions [4,5], such as vari-
ations in resolution and texture between image pairs, adding layers of
complexity to the task.

Existing registration techniques generally fall into two categories:
intensity-based and feature-based [3,5]. Intensity-based approaches, fo-
cusing on maximizing image similarity metrics, are limited to small ini-
tial registration errors and often fail under serious geometrical defor-
mations [5,6]. Feature-based methods, which detect and match hand-
crafted or learnable features, offer greater resilience to image deforma-
tions and noise, but struggle with nonlinear appearance distortions in-
herent in multimodal images [4]. Recent advanced deep learning tech-
niques, capable of learning features automatically, show promise in
overcoming these challenges [2,7]. Nevertheless, most deep learning
approaches require large amounts of pre-aligned images or labeled land-
marks for training [8], which may be inaccessible in practice. Therefore,
there is still an urgent need for more efficient and effective tools for mul-
timodal image registration.

In this paper, we bridge this gap by developing a novel multimodal
image registration method based on optimal transport (OT) [9]. The
OT theory, originated by Gaspard Monge in the 18th century and later
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developed by Leonid Kantorovich, is a rich mathematical framework
that aims to move one distribution of mass (or probability measure) to
another with minimum effort. Due to its capability of providing both
a valid metric and explicit correspondences for distributions, OT has
emerged as a powerful tool in various fields, including machine learn-
ing, computer vision, statistics, and biomedical research, among oth-
ers [10]. In particular, OT theory naturally quantifies uncertainty and
deformation with awareness of the underlying geometry, making it espe-
cially effective in a variety of imaging applications [11,12]. Moreover,
compared with deep learning-based approaches, OT is training-free and
can be directly applied to unseen multimodal pairs without supervision,
offering a practical alternative when annotated datasets are scarce.

Despite the advantages, existing OT-based image or point registra-
tion methods typically rely on one-shot matching [11,13,14] and assume
full correspondence between features [13,15,16], and such approaches
may fail in multimodal settings. In contrast, we formulate registration
as an iterative optimization of transport and transformation. This novel
perspective introduces two key benefits: (i) flexibility, enabling pro-
gressive improvement of alignment; and (ii) robustness, by incorporat-
ing regularized unbalanced OT to handle partial matches, outliers, and
modality-induced inconsistencies more effectively.

Contributions. Our major contributions are four-fold.

1. An iterative OT-based framework for multimodal registration.
We introduce the first framework that models multimodal image reg-
istration as an iterative sequence of unbalanced optimal transport
(UOT) problems over edge point sets. Unlike classical OT, our un-
balanced variant is capable of handling partial alignment, essential
for handling modality-specific structures and missing regions. Unlike
one-shot OT methods, our iterative approach progressively improves
alignment quality. The transformation is modeled in a polynomial
space, allowing the method to capture both affine and non-rigid de-
formations.

2. A theoretically grounded and efficient algorithm. We show that
the proposed joint optimization problem is biconvex with respect
to the transport plan and the transformation parameters. Using this
biconvexity, we develop an alternating minimization algorithm with
convergence guarantees to solve the problem efficiently.

3. Comprehensive evaluations in diverse modalities. We conduct
comprehensive experiments using various types of multimodal im-
ages, including brain MRI images with varying weights (i.e., T1 and
T2), brain images from different medical imaging techniques (i.e.,
CT and SPECT), and retina images of different angiographies. To our
knowledge, our proposed IOT framework is the first to exhibit lead-
ing performance across all these types of multimodal images, mark-
ing a significant breakthrough in general multimodal image registra-
tion.

4. Complementary and training-free design. The proposed method
is complementary to existing modality-agnostic features, robust sim-
ilarity measures, and learning-based frameworks. It can integrate
modality-robust features or similarities via a hybrid cost formulation.
Moreover, unlike deep learning methods that require large paired
datasets, IOT is fully training-free and can be directly applied to un-
seen multimodal pairs, making it particularly valuable when anno-
tated data are scarce.

The remainder of this paper is organized as follows. Section 2 pro-
vides an overview of existing image registration methods and the op-
timal transport theory. Section 3 details the formulation, theoretical
properties, and optimization algorithm of the proposed IOT method. In
Section 4, we evaluate the performance of our IOT approach through
various multimodal images. Supplementary materials include feature-
augmented extension, technical proofs, additional implementation de-
tails, and extended experiments covering unimodal bechmarks and
transformation regularity analyses. The implementation code for the
proposed method is available at the following link: https://github.com/
Mengyu8042/10T.
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2. Background

We briefly review existing work for image registration, with a focus
on intensity-based and feature-based paradigms, followed by the appli-
cations of optimal transport theory in this domain and their limitations.

To begin with, we summarize the notation used throughout the pa-
per. We adopt the standard convention of using uppercase boldface let-
ters for matrices, lowercase boldface letters for vectors, and regular font
for scalars. Specifically, x; denotes the ith element of a vector € R”,
and X; ; represents the (i, j)th element of a matrix X € R™™, For ma-
trices X and Y of the same dimension, their Frobenius inner product
is denoted as (X,Y) = ¥, ; X;;Y;;. The Euclidean norm of a vector x is
denoted by ||x||.

2.1. Image registration

Image registration seeks a spatial transformation that best aligns
one image with the other, traditionally referred to as the “moving" and
“fixed" images. Despite this terminology suggesting an asymmetric role,
the designation of which image is moving or fixed is flexible and user-
defined, catering to specific needs. Existing registration pipelines are
typically classified into intensity-based and feature-based [3,5].

Intensity-based methods. These methods deal directly with the in-
tensity values of entire images without requiring explicit feature ex-
traction [17,18]. Given a similarity metric, such as (normalized) cross-
correlation or mutual information, along with a transformation model
and an optimization method, intensity-based methods maximize the
similarity metric between the warped moving image and the fixed im-
age to estimate the transformation parameters. This pipeline can achieve
high accuracy if the initial misalignment between images is small. How-
ever, it faces two main limitations. First, the similarity metrics may not
be linearly related to the accuracy of image registration and are heav-
ily influenced by the size of the overlapping area and the appearance
differences between modalities [5]. Second, almost all intensity-based
methods are limited to a small range of initial registration errors, but
typically fail in cases of severe image deformations [6]. Such challenges
are further illustrated through the experimental results presented in Sec-
tion 4.

Feature-based methods. The feature-based pipeline can be more
effective in the face of geometrical deformations [5]. These approaches
extract features from images and reduce the task to feature matching,
aiming to find the underlying spatial transformation between two sets
of extracted features. Traditional feature-based methods, such as the
scale-invariant feature transform (SIFT) [19] and histograms of oriented
gradient (HOG) [20], rely on appearance attributes like colors, textures,
and gradient histograms for feature detection and description. However,
such appearance features often no longer match across different modal-
ities. Instead, features representing salient structures, such as corners
and edges, are largely preserved within multimodal images and thus pre-
ferred for capturing common information [4,21]. Recently, deep neural
networks (e.g., convolutional neural networks, Siamese networks, and
generative adversarial networks) have been employed to automatically
learn features rather than manual design. These techniques typically re-
quire labeled training data and are beyond the scope of this paper. We
refer to [22] for a comprehensive overview of this line of work.

2.2. Optimal transport for image registration

Consider two sets of points {z; ), {yj};_’;l c R4, each associated

with histograms a € A"™™! and b € A”"!, respectively, where A" ! =
{peR] : Y. pi = 1} represents the (n— 1)-dimensional standard sim-
plex. Then, a pair of discrete probability measures is defined as

n m
u= Za,ﬁmi and v = ijéy/,
i=1

Jj=1
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where 6, denotes the Dirac delta function spiking at z. The goal of opti-
mal transport (OT) is to find the most efficient way to move the masses
a and b to each other, according to certain ground costs between the
support points, {x;} and {y,}. The modern Kantorovich formulation of
OT takes the form
e (€T i= el )T @
where II(a,b) := {T € R™" : T1,, = a,T'1, = b} is the set of admis-
sible transportation plans, i.e., all joint probability distributions with
marginals a and b; T;; represents the amount of mass transferred from
x; to y;; and C € R is a cost matrix determined by the cost func-
tionc : RY X RY —» R,, where C;; = c(x;, y;) defines the pairwise cost of
moving one unit of mass from z; to y;. When c(z;, y)=llz,—y;lI” (p €
Z,), the optimal objective value of the problem (1) is known as the
p-Wasserstein distance, which has been widely used to quantify the dis-
crepancy between distributions. The solution to (1) is called the optimal
transport plan, achieving the minimal total cost of transportation.
During the past two decades, by leveraging the correspondences es-
tablished through the OT plan and the similarity metric provided by
the Wasserstein distance, OT-based image registration methods have
emerged and evolved, encompassing both intensity-based [15,16] and
feature-based approaches [11-14]. For example, Haker et al. [15] solved
the deformation flow using a partial differential equation method de-
rived from dynamic optimal transport. Rehman et al. [16] further re-
fined this by introducing a parallelized numerical scheme to facilitate
computation. In a different way, Motta et al. [11] and Tian et al. [13] fo-
cused on feature-based approaches, extracting graphs from images and
applying OT theory to match them. Despite these developments, OT-
based registration still faces two fundamental limitations:

1. Mass preservation assumption. Most existing methods assume that
the masses of intensities or features of two images are equal. When
applied to multimodal images, however, this constraint is often vi-
olated in multimodal settings due to modality-specific visibility, oc-
clusion, or missing regions.

2. One-shot correspondence. Current methods rely on a one-step
transport plan to estimate the transformation model. Although some
include a mismatch removal step [11], they can still be ineffective
if the initial correspondence contains a high proportion of inconsis-
tencies.

Our work. To address these issues, we propose an iterative registra-
tion framework based on regularized unbalanced OT, which relaxes the
mass constraint and allows progressive refinement of alignment. This
strategy significantly improves robustness in the presence of modality-
induced inconsistencies, partial overlap, and large deformations.

3. Iterative optimal transport

This section presents our Iterative Optimal Transport (IOT) method.
Unlike existing OT-based methods that rely on a one-shot matching
step with strict mass preservation assumptions, IOT jointly estimates
a transformation and soft correspondences under a relaxed OT frame-
work. First, we introduce our regularized unbalanced optimal transport
criterion and transformation models, followed by a discussion of the
theoretical properties of the proposed problem. Then, we develop an
alternating minimization strategy to iteratively solve the problem and
discuss its convergence and complexity.

3.1. Problem formulation

Suppose {x;}!_| C R? is a set of points generated from discretizing
the edge maps of a moving image, and {y;}"_, C R? is the counterpart
from a fixed image. Recall that @ and b are their associated histograms,
respectively. Without prior knowledge, they are typically chosen as dis-
crete uniform distributions, i.e., @ = n~'1, and b= m~'1,,. The goal is
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to align the moving points {x;} with the fixed ones {y;} using a trans-
formation function f € H : R? — R2.

A natural approach to alignment is to minimize the Wasserstein dis-
tance between the distributions of { f(x,)} and {y,}, inspired by classi-
cal optimal transport theory. However, the classical OT formulation as-
sumes exact mass preservation, which often fails to hold in multimodal
settings where structural visibility is often inconsistent. For example,
in a retina image pair acquired from different angiographies (Fig. 1),
small vessels may appear prominently in one modality but be absent in
the other.

In addition, most existing OT-based registration methods adopt a
one-shot matching strategy: they compute a single transport plan and
use it to estimate the transformation. However, this design lacks a feed-
back mechanism to iteratively refine the results. Therefore, it can be
fragile in scenarios that involve a large initial misalignment or modality-
induced distortions. In such cases, the resulting correspondences may be
unreliable, leading to poor transformation estimates. As shown in Fig. 1,
the transformation f© obtained from the initial plan can differ largely
from the final optimal solution f®,

To address such limitations, we adopt the unbalanced OT (UOT)
framework [23], which relaxes the strict marginal constraints using KL
divergence penalties. This formulation enables soft and partial match-
ing, making it well-suited for multimodal registration. Under this crite-
rion, we jointly estimate the transformation function f and the transport
plan T through an iterative optimization process.

Formally, we minimize the following objective:

}11617‘} UOT, (f) + eR(f), 2)
where the first term,

UOT,(f) = min > e(f @) y)T;; + AKL(TL,,[la) + AKL(T1,,||b),
< ixm =

3)

characterizes the similarity between the transformed and fixed points
and aims to enforce their closeness; the second term R(f) is a reg-
ularizer on f, weighted by the parameter ¢ > 0. Following previous
work [24,25], we choose R(f) =Y, ||f(z;) —z;||*, ensuring that the
moving points do not deviate excessively from their initial positions.
The transformation space H will be elaborated on later.

In the UOT distance defined by (3), we employ the squared Euclidean
distance as the ground cost, i.e., c(f(x).y;) = || f () - yj||2. The cost
function can naturally integrate modality-robust features; see Section S1
in the Supplementary Material (SM) for details. The Kullback-Leibler di-
vergence is defined by KL(pllq) = ', p; log(p;/4;) — p; + ¢; with the con-
vention that 0log 0 = 0. The unbalanced relaxation parameter 4 > 0 bal-
ances the tolerance for unmatched regions: larger values enforce stricter
matching, while smaller values allow more non-overlap between fea-
tures. As A — +o0, the formulation degenerates to the classical OT. Com-
pared to the Wasserstein distance, the UOT formulation restricts long-
range transportation and allows unassigned mass, thus improving ro-
bustness to outliers and partial overlaps resulting from mismatched or
missing features. We determine A adaptively using a robust intensity-
based similarity measure; see Section 4.1 for details.

Transformation models. The transformation function f can be ei-
ther linear or nonlinear. We model f using a global polynomial trans-
formation of degree g € Z,:

9 J o
H={f|f@=(fi@), @) filw =Y, Y 0)x"x}, k=12

j=0 i=0
C)

Such a functional space is widely recognized in registration problems
for its balance between flexibility and generalization capability [1,6].
Particularly, when the order ¢ = 1, the model simplifies to an affine
transformation, allowing shifting, scaling, shearing, and rotation to be
modeled. For orders g > 2, it encompasses nonlinear parts to model
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Iterative Optimal Transport

Edge
Moving Extraction

Image

Fixed
Image

Warped
Moving
Image

] 4 Checker-
board

Fig. 1. Overview of the proposed Iterative Optimal Transport method. Given a moving image and a fixed image, structural edges are first extracted from both
modalities. At each iteration, a soft correspondence matrix T*¥) between warped moving and fixed points is computed, and a transformation f* to warp the moving
image is estimated. This process iteratively refines T and f until the algorithm converges. The final output includes the warped moving image and a checkerboard

visualization to assess registration quality.

more complicated deformations. The total number of coefficients in f
is (¢ + 1)(g + 2), which is independent of the size of the point set, ren-
dering it more computationally efficient compared to those non-rigid
methods based on local control points [21]. It’s worth noting that other
functional spaces, like thin-plate splines (TPS) and reproducing kernel
Hilbert space (RKHS), could also be directly integrated into the formu-
lation (2), expanding the versatility of our approach.

Differences from existing UOT-based registration methods. Our
work differs from existing UOT-based registration in scope, formulation,
and theory. Prior works [12,14] focused on shape or point cloud match-
ing and did not consider the challenges of multimodal image registra-
tion. Methodologically, unlike Feydy et al. [12], where UOT serves only
as a differentiable fidelity term or Shen et al. [14], where UOT provides
one-shot correspondences, we jointly optimize both the transport plan
T and transformation f in a biconvex objective, enabling correspon-
dences to be refined iteratively. Theoretically, we establish biconvexity
and convergence guarantees (see Section 3.2), which were not analyzed
in the cited works.

3.2. Main algorithm

We use the block coordinate descent (BCD) method [26] to solve
the problem (2). The idea is to minimize f and T alternately for each
coordinate, while keeping the other fixed. By exploiting the separability
of the feasible region, this method breaks down the original problem
into more tractable subproblems. Theorem 1 shows the biconvexity of
this problem, with a detailed proof provided in Section S2 of SM.

Theorem 1. Given R(f) =X, | f (@) — z;||* and ¢(f (@), y)) = I f(2;) —
Y, |2, the problem (2) is biconvex with respect to f and T.

Due to the convexity of the subproblems resulting from BCD, efficient
convex minimization strategies can be used to solve these subproblems.
The overall alternating minimization procedure is summarized in Algo-
rithm 1 and is illustrated in Fig. 1.

Convergence guarantee. Considering that the objective function of
each subproblem in (5) and (6) is continuously differentiable and strictly
convex along the corresponding coordinate, according to established re-
sults concerning the BCD method [26], the sequence {(f®,T®)} pro-
duced by Algorithm 1 is guaranteed to converge to a stationary point.

Computational complexity. In Algorithm 1, we solve the UOT
problem in (5) using the maximization-minimization approach proposed
by [27], requiring a computational cost of O(nm). For the quadratic op-
timization problem in (6), we utilize a celebrated quasi-Newton method
called Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [28], also
demanding a complexity of O(nm). Consequently, the overall time and
space complexities of Algorithm 1 are both O(nm), making it well-suited
for large-scale image problems.

Extension to 3D images. The proposed IOT method is dimension-
agnostic and can be naturally extended to 3D. The main modification
is to extract salient 3D structural point sets. This can be done using 3D
edge detectors, which are already available in standard libraries. Then,

Algorithm 1 Iterative optimal transport.

1: Input: moving points {x;}}_, fixed points {y;}]" |, polynomial order

q, regularization parameters ¢, A

2: Initialize f©O(x;) = ;, k =0
3: repeat

4:  Setk=k+1.

5:

Update T® by solving the problem
min " || f* V@) -y, I°T; + AKL(TL,,||In"'1,)
i.j

Xi
TeR™

(5)
+AKL(TT1,||m'1,,)

with fixed f*~1 using a maximization-minimization approach [27].
6:  Update f% by solving the problem

. 2(k) 2
}“e‘;‘}zj I/ @) -y, I1° T +eZ £ () — ] (6)
with fixed T®¥) using a quasi-Newton method [28].

7: until Convergence
8: Output: f®, T®

we apply the same BCD framework by alternatively updating the unbal-
anced OT plan T and the transformation f in R3, without modifying the
core algorithm.

4. Experiments

To assess the effectiveness of the proposed Iterative Optimal Trans-
port (IOT) method, we conduct extensive experiments on the registra-
tion of diverse multimodal datasets, which are crucial for medical re-
search. We compare IOT with diverse state-of-the-art approaches, con-
sidering both qualitative and quantitative evaluations.

4.1. Experimental setup

Datasets. We consider three multimodal image datasets: (i) brain
MRI T1- and T2-weighted images (MRI) originated from the BrainWeb
database'; (ii) brain CT and SPECT images (CT) originated from the
Atlas database?; and (iii) retina images from different angiographies
(Retina) collected by Wang et al. [29]. Each dataset respectively con-
tains 10, 10, and 20 image pairs, each associated with 20 pairs of land-
mark sets labeled by Jiang et al. [5], which serve as the ground truth
for quantitative evaluation. The resolution of the images ranges from
181 x 217 to 640 x 640 pixels. The sample data are shown in Fig. 2.

The challenges posed by these datasets progressively increase. For
MRI, distortions between modalities primarily manifest in colors. On

L https://brainweb.bic.mni.mcgill.ca/brainweb/
2 http://www.med.harvard.edu/aanlib/home.html
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Fig. 2. Sample image pairs in the MRI (top row), CT (middle row), and Retina (bottom row) datasets, where the green dots are corresponding landmarks. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

the other hand, CT exhibits significant differences in texture, resolu-
tion, and geometric deformation. Retina not only encounters modal dif-
ferences and deformations, but also has severe partial overlaps. Such
diverse scenarios can comprehensively evaluate the validity and robust-
ness of the proposed IOT method.

In order to encompass a variety of geometric deformations, be-
sides aligning real image pairs (referred to as C1), we manually build
deformations by warping the fixed image using random affine (C2)
or quadratic (C3) transformation matrices following previous litera-
ture [1,5,6]. The transformation parameters are uniformly generated
within the ranges given in Section S3 of SM. Furthermore, to simu-
late potential technical errors, we include noisy scenarios where the
fixed image is corrupted by random salt-and-pepper noise, accounting
for 0.1 % of the pixels.

Competing Methods. We compare IOT with nine baseline methods
from different categories as follows. All competing methods are carefully
tuned to achieve optimal performance.

1. Point cloud registration methods. We consider two modern point
data processing libraries, Open3D [30] and Probreg [31]. Specif-
ically, we use the iterative closest point algorithm from Open3D
(Open3D-ICP), and the Gaussian mixture model (Probreg-GMM) and
Gaussian filter method (Probreg-Filter) from Probreg, covering rep-
resentative deterministic and probabilistic approaches.

2. Intensity-based multimodal image registration methods. We include
the symmetric normalization method from the ANTs toolbox (ANTs-
SyN) [32], which is widely used for medical image registration. We
also consider the correlation ratio (CR) via Parzen windowing [33],
using publicly available code adapted for 2D image inputs.

3. Feature-based multimodal image registration methods. These in-
clude regularized Gaussian fields (RGF) [21], dense adaptive
self-correlation (DASC) [34], radiation-variation insensitive fea-
ture transform (RIFT) [4], and deformable registration with DI-
NOv2 encoder (DINOreg) [35], covering both hand-crafted and
deep learning-based feature representations. All methods are imple-
mented using source code released by their authors, with DINOreg
adapted for 2D image registration.

Evaluation. As the metrics used in [4,5], we employ the root mean
square error (RMSE) and the mean error (ME) of the matched land-

marks to assess the registration accuracy. More precisely, let {x;} IL: |
and {y;'} fz | represent the landmark pixels on the moving and fixed im-
ages, respectively. Denote f as the estimated transformation function.
Then, the RMSE and ME for f are defined by

L L
1 A 1 N
RMSE = \J T ; I @) - y;I?. ME=— ; I/ @) =yl

4.2. Implementation details

Edge maps are extracted from the MRI and CT datasets using the
Canny edge detector, and from the Retina dataset using a specialized
retinal vessel segmentation algorithm [36]. Subsequently, we apply a
sampling method introduced in [37] to discretize these edges into sets of
points with n = m = 300. Empirical results indicate that the registration
performance is not sensitive to the number of points. For a fair compar-
ison, the same points are used in the proposed IOT method, point cloud
matching approaches, and the edge-based RGF method. For facilitating
parameter selection, we first standardize the feature points such that
both {x;} and {y;} have zero mean and unit variance.

Hyperparameter selection. The proposed IOT method is influenced
by three primary hyperparameters, i.e., g, €, and 4. The order of polyno-
mials g determines the complexity and flexibility of the transformation
model, the regularization parameter ¢ controls the displacement of mov-
ing points, and the marginal relaxation parameter A indicates the toler-
ance for mismatch of extracted feature points. We perform a sensitivity
analysis based on the MRI dataset under C1 without introducing noise.
In particular, the parameters are varied in the range of ¢ € {1,2,3},
g€ {107,1073,1072,107", 1}, and A € {1073,5x 1073,2x 1072,107!,5 x
1071}. The results of RMSE under these varying parameters are depicted
in Fig. 3.

The empirical evidence, as illustrated in Fig. 3, suggests that an
affine model with proper hyperparameters can provide a satisfactory
approximation for actual geometric deformations. Higher-order polyno-
mials exhibit improved robustness to the choice of £ and 4, while they
also increase computational demands. To balance these two aspects,
we employ the IOT method with affine (¢ = 1, denoted as IOT,) and
quadratic (¢ = 2, denoted as I0T,) transformations in the subsequent
experiments.
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Fig. 3. Effect of the order of polynomials ¢, the regularization parameter ¢, and the marginal relaxation parameter A on RMSE for the proposed IOT method. The

average values on the MRI dataset are reported.

Moreover, the IOT method shows superior performance over a wide
range of e. Specifically, as long as ¢ is not too large, the resulting RMSE is
approximately in the same order. In contrast, very large values of € tend
to bias the solution too far away from the UOT paradigm. Consequently,
we set the regularization parameter to £ = 1072,

Compared to e, we observe that the IOT method is more sensitive to
the marginal relaxation parameter A. Too large A can force the alignment
of unmatched feature points, resulting in high registration errors. This
highlights the necessity of unbalanced relaxation in the IOT method.
On the other hand, exceedingly small values of 4 would overly loosen
the marginal constraints, leading to a solution that deviates from the
true underlying transport structure. In general, the optimal 4 depends
on both the degree of non-overlap and feature mismatch in image pairs,
which can vary significantly across different images. Therefore, instead
of fixing it in advance, we automatically tune this parameter by search-
ing among 4 € {1073,5x1073,2x 1072,107!,5x 10~!} and choose the
one that maximizes the cross cumulative residual entropy [38,39] be-
tween the warped moving image and fixed image.

4.3. Performance comparison

To evaluate our proposed IOT method comprehensively, we compare
it with other state-of-the-art registration methods through both quan-
titative and qualitative aspects of registration accuracy, as well as an
assessment of computational efficiency.

Quantitative performance. We evaluate the registration accuracy
of our IOT method, specifically IOT, and IOT,, by comparing with the
baseline methods mentioned above. Since errors across different image
pairs may vary dramatically, we use rank instead of the original er-
ror for performance comparison [40]. More specifically, for each im-
age pair, all methods are ranked based on their RMSE, with the best-
performing method receiving rank 1 and the poorest performer receiv-
ing rank 11. Then we average the ranks of a method across all image
pairs in a dataset. Such average ranks based on RMSE are presented in
Tables 1-3. The results based on ME, which display a similar pattern,
are included in Section S4.1 of SM.

Overall, we observe that the proposed IOT method consistently
achieves the smallest RMSE ranking. In almost all cases, with and with-
out added noise, IOT, and IOT, rank in the top three positions, indicat-
ing superior registration accuracy and robustness. We also observe that
in simple cases with negligibly small initial registration errors (e.g., C1
in MRI dataset; as illustrated in Fig. 2), the competing approaches, in-
cluding Probreg-GMM (point cloud), CR (intensity-based), and RGF/DI-
NOreg (feature-based) also perform well, with comparable accuracy to
our IOT. However, their performance deteriorates notably when noise or
deformation complexity increases, as observed from C1 to C2 in Table 1
for Probreg-GMM/CR/DINOreg, and from the MRI dataset (Table 1) to
the CT dataset (Table 2) for RGF.

In Tables 1 and 2, the Probreg-GMM method, although underper-
forming our IOT method, shows competitive performance on the brain
image datasets; however, its efficacy diminishes when applied to the

Table 1

Average rank (with standard deviation in parentheses) based on RMSE of each
method on the MRI dataset in the cases of C1-C3, without or with noise. The
smaller the better.

Method C1 C2 C3

w/o noise w/ noise w/onoise w/noise w/onoise w/ noise
Open3D-ICP  5.0(1.9) 5.0(25) 4.3(0.8) 4.8(0.7) 49(0.3) 48(0.4)
Probreg-Filter 11.0 (0.0) 11.0(0.0) 6.1 (1.4) 5.8(1.2) 6.9(2.8) 5.9(2.8)
Probreg-GMM 2.3 (0.6) 2.3(0.9) 4.6(09) 3.5(1.4) 3.6(0.5 3.0(0.9)
ANTs-SyN 7.8(2.3) 83(.9) 78(04) 80(1.1) 84(11) 85(.1)
CR 4.9(2.8) 3.0(25) 10.2(0.9) 9.8(1.5) 8.8(21) 9.6(1.9)
RGF 2.3(0.6) 2309 27@1.2 3.3(24) 3.6(1.6) 42(25)
DASC 10.0 (0.0) 10.0(0.0) 9.7(1.2) 9.9(1.0) 9.7(1.1) 9.7(0.8)
RIFT 7.1(31) 85(0.5 95(1.6) 9.0(1.7) 84(.7) 81(1.9
DINOreg 4.2(29) 42(28) 73(0.8) 7.6(0.9 82(0.9 78(.1)
10T, 2.3(0.6) 2309 1.3(0.5) 1.7(0.8) 2.1(0.9) 1.4(0.5)
10T, 2.3(0.6) 2.3(09) 2.5(09) 2.6(09) 1.4(0.5 3.0(0.8)

* The top-3 results of each case are in bold, and the best result is in italics.
* The median initial RMSEs for C1-C3 are 0.97, 29.72, and 34.64, respectively.

Table 2

Average rank (with standard deviation in parentheses) based on RMSE of each
method on the CT dataset in the cases of C1-C3, without or with noise. The
smaller the better.

Method Cl Cc2 Cc3

w/o noise w/ noise w/onoise w/ noise Ww/onoise w/ noise
Open3D-ICP 3.7 (1.0) 5.3(1.5) 4.3(0.9) 4.7(0.9) 4.5(0.7) 5.0(1.0)
Probreg-Filter 8.3 (1.7) 9.8(1.8) 6.5(2.8) 55(2.6) 6.6(2.7) 5.6(3.2)
Probreg-GMM 4.6 (1.7) 4.5(1.6) 3.4(1.0) 27 (0.9 2.6(1.2) 23(1.3)
ANTs-SyN 6.0(0.8) 53(1.6) 7.8(1.0)0 7.9(0.5) 8.2(1.5 85(1.4)
CR 10.5(0.7) 9.8(1.2) 9.2(1.8) 10.1(1.0) 9.0(1.5) 8.0(1.9)
RGF 54(26) 53(27) 44(21) 47@01.6) 4523 4824
DASC 9.3(1.1) 8.7(0.8) 10.6 (0.5) 10.4(0.5) 10.3(0.8) 10.5(0.7)
RIFT 9.1(1.0) 88(.2) 85(1.7) 85@1.7) 7427 7724
DINOreg 56(1.2) 4419 7.0@1.00 7.1(0.5 78(.5 81(.0)
10T, 1.1(0.3) 1.6(1.5) 1.4(0.7) 20(1.5) 27014 24014
10T, 2.4(0.8) 25(1.00 29(1.4) 24(1.1) 2411 3.1(0.9

* The top-3 results of each case are in bold, and the best result is in italics.
* The median initial RMSEs for C1-C3 are 14.64, 39.66, and 40.95, respec-
tively.

more intricate Retina dataset, as shown in Table 3. In comparison, our
approach consistently yields high registration accuracy across a variety
of image types. Another notable competitor is the RGF method, which
also achieves a relatively low average rank in a majority of instances.
Nevertheless, its performance is unstable, as reflected in its standard
deviations, leading to inferior registration results at times. The deep
learning-based DINOreg method also achieves moderate success but
does not reach the top ranks of IOT.

Additionally, we note that IOT, may exhibit inferior performance
compared to IOT; when modeling non-rigid deformation under noisy
conditions (e.g., C3 with noise in Table 1). This can be attributed to
the selected edge maps being corrupted by outliers, which result from
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(f) Original and warped edge maps using the IOT method.

Fig. 4. Qualitative comparison of different methods in C1. For each pair in Fig. 4(a), the left is the moving image, and the right is the fixed image. For each pair
in Figs. 4(b)-(e), the left is the warped moving image yielded by each method, and the right is the checkerboard of warped moving and fixed images. For each pair
in Fig. 4(f), the left represents the edge maps before registration, and the right represents the edge maps after registration using the proposed IOT method, where
the edges of the moving image are in blue and those of the fixed image are in red. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

image noise. An affine model, which broadly aligns contours, tends to
produce relatively small matching errors. By contrast, a non-rigid model
may encourage aligning some outliers to minimize the registration cri-
terion. This misalignment can lead to overfitting on outliers, reducing
the registration accuracy. Therefore, we recommend opting for ¢ = 1 in
the transformation function in the absence of severe non-rigid deforma-
tions.

Qualitative performance. We next conduct qualitative comparisons
on the three datasets. For clarity, we focus on only the top-performing
competitors within each category, i.e., Probreg-GMM, ANTs-SyN, and

RGF, alongside our IOT method for qualitative analyses. We randomly
select two image pairs from each dataset for illustration. The original
images and registration results are presented in Figs. 4-6, correspond-
ing to cases C1-C3, respectively. Here, the warped moving images are
overlaid onto the fixed images using a checkerboard pattern. Addition-
ally, for the IOT method, we also display the warped edge maps to show
its effectiveness.

Figs. 4-6 clearly reveal considerable variations in texture, color, and
lightness across different modalities. Furthermore, there are significant
areas of non-overlap in images (e.g., Retina images in Fig. 6) and a large
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Fig. 5. Qualitative comparison of different methods in C2. For each pair in Fig. 5(a), the left is the moving image, and the right is the fixed image. For each pair
in Figs. 5(b)-(e), the left is the warped moving image yielded by each method, and the right is the checkerboard of warped moving and fixed images. For each pair
in Fig. 5(f), the left represents the edge maps before registration, and the right represents the edge maps after registration using the proposed IOT method, where
the edges of the moving image are in blue and those of the fixed image are in red. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

proportion of mismatched feature points (e.g., CT images in Fig. 5).
In such challenging scenarios, our IOT method demonstrates superior
accuracy compared to other leading approaches, as evident in both
checkerboards and overlap edges. Taking Fig. 5 as an example, the ME
of IOT on each image pair equals 1.71, 2.54, 4.29, 4.14, 2.78, and 2.94,
respectively. These results further confirm that our method can achieve
precise registration for multimodal images, even in the face of substan-
tial modal differences, severe geometric deformations, and extensive
non-overlapping regions.

The observed robustness of IOT to noisy or mismatched edge sets
arises from three key designs. First, we estimate correspondences within

the algorithm via unbalanced OT, which allows partial matching, so
modality-specific or missing structures are naturally left unmatched in-
stead of being forced to align. Second, we re-estimate the transport plan
and the transformation iteratively. Early iterations coarsely align ge-
ometry, and subsequent iterations progressively refine correspondences,
thereby reducing sensitivity to local edge misalignment. Third, we ad-
just the marginal relaxation content-adaptive, so the amount of un-
matched mass is tuned to image statistics, further improving robustness
when the shareable structure is limited.

Although IOT is motivated by multimodal challenges, the
method itself is not restricted to cross-modality settings. To demon-
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Fig. 6. Qualitative comparison of different methods in C3. For each pair in Fig. 6(a), the left is the moving image, and the right is the fixed image. For each pair
in Figs. 6(b)-(e), the left is the warped moving image yielded by each method, and the right is the checkerboard of warped moving and fixed images. For each pair
in Fig. 6(f), the left represents the edge maps before registration, and the right represents the edge maps after registration using the proposed IOT method, where
the edges of the moving image are in blue and those of the fixed image are in red. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

strate broader applicability, we additionally evaluated IOT on
unimodal benchmarks; see Section S4.2 of SM for details and
results.

Running time. Table 4 reports the average computational time of
each registration method on the three datasets. IOT,; performs at a mid-
tier level in terms of computational efficiency, computing faster than
other feature-based registration approaches, while requiring a longer
but comparable runtime when compared to most point cloud matching
and intensity-based image registration algorithms. IOT, is slightly less
efficient than IOT; due to the additional complexity in estimating non-
rigid transformations.

The computational time of the IOT method may be reduced. We find
that its runtime is mainly dominated by solving the UOT subproblem.
To improve the efficiency, we can leverage recently advanced fast UOT
solvers that approximate solutions within a linear time. Additionally,
rewriting the code in C+ + could significantly reduce the runtime, po-
tentially by an order of magnitude. Furthermore, exploring GPU parallel
processing also presents a promising route for further accelerating the
computation.

Beyond accuracy and efficiency, we also evaluated the physical plau-
sibility of the estimated transformations using Jacobian-based regularity
metrics; see Section S4.3 of SM for detailed results.
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Table 3

Average rank (with standard deviation in parentheses) based on RMSE of
each method on the Retina dataset in the cases of C1-C3, without or with
noise. The smaller the better.

Method Cl Cc2 C3

w/o noise w/ noise w/onoise w/ noise w/onoise w/ noise
Open3D-ICP  59(2.1) 6.0(1.90 42(.7) 48(1.8) 3.1(2.5) 37(2.3)
Probreg-Filter 8.3(1.8) 7.9(2.0) 7.8(2.0) 81(1.9) 7.0(1.9) 5.8(27)
Probreg-GMM 7.5(2.3) 6.1(2.9) 6.7(24) 63(3.2) 7.0(21) 6.3(2.6)
ANTs-SyN 51(2.3) 5.4(25) 4.8(26) 51(27) 57(23) 59(2.2)
CR 8.9(2.3) 89(1.8) 101(1.4 87(32) 91(29 93@1.7)
RGF 2.8(2.7) 3.6(3.1) 54(37) 4.0(33) 49(35 5441
DASC 8.6(2.5) 8.7(23) 87(1.9 9.0(.8) 95(1.6) 8.8(2.5)
RIFT 7.5(3.1) 7.9(.3) 63(34) 6.7(35 6.6(3.3) 7.0(.2)
DINOreg 49(24) 49(25) 46(28) 53(28) 58(1.9 6.1(27)
10T, 3.0(1.6) 31(20) 31(1.6) 3420 2617 33(2.0)
10T, 3.5(1.5) 3.5(.6) 43(1.8) 4.6(1.0) 47 (1.5 4.4(.8)

* The top-3 results of each case are in bold, and the best result is in italics.
* The median initial RMSEs for C1-C3 are 20.66, 36.82, and 36.84, respec-
tively.

Table 4
Average computational time (in seconds) per
image pair of each method on three datasets.

Method MRI CT Retina
Open3D-ICP 2.81 291 4.03
Probreg-Filter 2.82 2.93 4.04
Probreg-GMM 3.69 4.14 6.02
ANTs-SyN 1.48 2.67 4.84
CR 9.85 12.76 17.70
RGF 8.54 12.71 15.01
DASC 17.33  25.88 33.35
RIFT 13.42 16.04 19.78
DINOreg 50.14  96.12  161.63
10T, 4.85 5.72 7.43
10T, 6.48 8.14 9.67

5. Conclusion

In this study, we have introduced a novel and robust Iterative Op-
timal Transport (IOT) approach for multimodal image registration. The
key idea is to minimize a regularized UOT criterion, which we address
through alternatively solving for the transformation function and the
correspondence relationship, backed by theoretical convergence guar-
antees. Through extensive testing, our IOT method has shown its su-
periority in handling a diverse range of modal discrepancies, geomet-
ric distortions, and noise levels. While the experiments mainly focus
on medical images, our method also yields promising performance in a
broader spectrum of scenarios, like visible and infrared image registra-
tion, further demonstrating its impressive adaptability and universality
to various registration challenges among different modalities.

Although our design reduces dependence on the quality of extracted
edge sets, we acknowledge a natural limitation: performance may de-
grade when the two images lack sufficiently salient shared structures.
For example, abdominal MRI-CT image pairs frequently exhibit ambigu-
ous organ boundaries, large modality-specific regions, and local non-
rigid deformations. These factors make our edge-driven global registra-
tion insufficient. To address this, a more reliable organ extractor should
replace general edge detection, and then the feature-augmented cost can
provide more meaningful semantic guidance. Furthermore, IOT can be
implemented in a coarse-to-fine manner. This approach begins with a
global model and progressively incorporates more expressive deforma-
tion families, such as TPS or RKHS, at finer scales to capture complex
local non-rigid motions. We leave these directions to future work.

Finally, while the computational intensity remains a challenge for
10T, we have discovered potential directions for acceleration, which will
be a focus of our future work. Moreover, we plan to utilize this powerful
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registration tool for downstream analyses such as visual tracking and
multimodal image fusion, paving the way for both exploratory research
and practical applications.
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