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Abstract
Analyzing the correlation between interval-valued data presents an essential yet challenging problem in modern statistical
research due to the lack of basic geometric and algebraic structures. Existing methods are often limited by their reliance
on algebraic formulations or assumptions about the underlying distribution of true values within intervals. Moreover, they
primarily focus on simple midpoint-range interval representations, restricting their applicability to more complex interval
structures, e.g., when the interval containsmultiple segments. To address these limitations,we introduce the Fréchet framework
into the interval metric space equipped with the Hausdorff distance, extending the notions of Fréchet mean and proposing
a more general and straightforward interval dependency measure, called Hausdorff correlation. The proposed method offers
a strong geometric interpretation, revealing the relationship between random intervals and their Hausdorff mean, while also
accommodating a broader range of interval forms. From a theoretical perspective, we establish the foundational properties
of the proposed framework, proving the existence and uniqueness of the Hausdorff mean. Empirical evaluations on both
synthetic and real-world datasets demonstrate the distinctiveness and effectiveness of Hausdorff correlation and its superior
performance in feature selection compared to existing methods. In particular, a real-world Wearable Watch Dataset analysis
shows theHausdorff correlation successfully captures the relationship betweenmulti-segment sleep intervals andphysiological
indicators, where existing methods fail to provide meaningful estimates.

Keywords Hausdorff distance · Metric space · Interval-valued data · Multi-segment intervals

1 Introduction

Due to privacy restrictions and the increasing complexity of
large datasets, accessing individual observations can be chal-
lenging, except for interval-valued data. Examples include
price fluctuations over a given period of time, daily varia-
tions in systolic and diastolic blood pressure of a patient,
personal information such as income and age, and aggregated
transaction summaries per card, which are often recorded as
intervals rather than precise values (Billard and Diday 2003;
Gil et al. 2007; Sinova et al. 2012).

Analyzing such interval-valued data is a crucial, yet chal-
lenging problem in modern statistical research. Billard and
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Le-Rademacher (2012) andD’Urso andGiordani (2004) pro-
vided a detailed description and illustration of the principal
component methodology for interval data, while El Ghaoui
et al. (2003) addressed a binary linear classification prob-
lem using an interval matrix uncertainty model. Numerous
studies have explored interval regression from various per-
spectives and within different frameworks. For example,
Diamond (1990) performed least squares regression on the
interval data based on interval arithmetic, while the other
way is by characterizing the intervals by their midpoint-
range tandem (de Carvalho et al. 2004; Neto and de Carvalho
2008, 2010). When dealing with interval data for statistical
purposes, intervals are treated as random elements over a
probability spacewith the expected value inKudō-Aumann’s
sense, as explored by Aumann (1965) and Gil et al. (2007).
Furthermore, Billard (2006) and Billard (2008) considered
the interval-valued data as a form of symbolic data. However,
existing methods are often constrained by algebraic defini-
tions or rely on assumptions regarding the distribution of
true values within intervals. They presuppose a specific data
distribution or focus solely on compact convex intervals on
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the real line, typically represented using the midpoint-range
representation.

Thus, we aim to develop a more general and straight-
forward framework for analyzing interval data. Recently,
Petersen and Müller (2019) considered modeling distribu-
tional data as randomobjects in theWassersteinmetric space,
which has been extensively studied for its theoretical foun-
dation and interpretability related to the optimal transport
problem (Meng et al. 2019, 2020; Zhang et al. 2021; Li
et al. 2023a; Zhang et al. 2023a, b; Li et al. 2024; Hu et al.
2025). In the space of one-dimensional probability densities
equipped with the Wasserstein metric, the authors extended
the notion of the Fréchet mean to define the Wasserstein-
Fréchet mean (also referred to as theWasserstein barycenter)
in metric space. This extension led to the definition of a
Wasserstein-based covariancemeasure, which admits a natu-
ral interpretation as the expected inner product of Centralized
optimal transport maps in the Hilbert space L2.

Motivated by this line of research, we focus on modeling
interval-valued data as random objects in a metric space. In
particular, we adopt the Hausdorff distance, a classical met-
ric that quantifies the discrepancy between two subsets of
a metric space. The intervals we consider are more general
than those in previous studies, as they are only required to
be nonempty and compact, whereas prior work additionally
assumed convexity in a real line. We fully utilize the struc-
ture of the interval metric space endowed with the Hausdorff
distance to explore the intrinsic nature of intervals, rather
than characterizing them solely through their midpoint and
length.

Our key contributions can be summarized as follows. First,
by treating intervals as random objects, we extend the con-
cepts of Fréchet mean and variance to an interval metric
space equipped with the Hausdorff distance, redefining the
corresponding mean and variance of intervals. These defini-
tions offer an intuitive geometric interpretation as a natural
generalization of the standard mean and variance. Second,
we propose a novel covariance measure, termed Hausdorff
covariance, to quantify the relationship between two random
intervals, independent of interval type or data distribution.
Analogous to the notion of a regular covariance for an appro-
priate inner product, Hausdorff covariance can be interpreted
as measuring the degree of synchronization in deviations
from their Fréchet means. Finally, we establish the basic
theoretical foundation for our definitions and demonstrate
the superior performance of the proposed Hausdorff correla-
tion across various synthetic and real-world datasets. Unlike
existing approaches, which are restricted to single-segment
interval data, our method extends naturally to multi-segment
interval data, thereby providing a broader and more general
analytical framework.

Figure 1 highlights the key characteristics of our pro-
posed correlation measure. As shown in Figure 1(a), The

midpoints of the intervals exhibit a strong positive cor-
relation (0.88), whereas the interval lengths demonstrate
a negative correlation (-0.95), based on the two interval
sequences {xi }100i=1 and {yi }100i=1. The midpoint pairs (xci , y

c
i )

and range pairs (xri , y
r
i ) are generated under the settings

in Section 3.1, with yci following Type 3 and yri follow-
ing Type 1. Please refer to Section 3.1 for further details of
the experimental setup. To quantify the relationship between
two interval sequences, we compute four types of correla-
tions: midpoint-based, symbolic, arithmetic-based, and the
proposed Hausdorff correlation. The corresponding corre-
lation values are 0.88, 0.86, 0.80, and 0.62, respectively.
Compared to other methods, our method effectively incorpo-
rates the influence of interval lengths in the overall correlation
analysis, achieving a more balanced consideration of both
midpoint and length correlations. In contrast, other meth-
ods primarily focus on the correlation of the midpoint while
overlooking the role of interval lengths. Furthermore, our
method extends beyond single-segment interval data, accom-
modating multi-segment interval structures. As a concrete
example,we apply ourmethod to theWearableWatchDataset
to assess the correlation between multi-segment sleep inter-
vals and single-segment physiological signal intervals. As
shown in Figure 1(b), the intervals at the same position on
the horizontal line represent amulti-segment interval sample.
The Hausdorff correlation between the intensity of high-
frequency heart rate and sleep durations is estimated at 0.299,
aligning well with physiological expectations. This demon-
strates the broader applicability of ourmethod, whereas other
interval data analysis frameworks may not be suitable for
handling multi-segment intervals. Detailed experiments and
discussion can be found in Section 3.

The remainder of this paper is organized as follows. In
Section 2, we start by introducing the fundamental concepts
of Hausdorff distance, Fréchet mean, and Fréchet variance.
And then, we extend the notion of Fréchet mean to an interval
metric space equipped with the Hausdorff distance and intro-
duce a novel relationship measure, Hausdorff covariance for
random intervals. In Section 3, we compare our proposed
method with existing mainstream correlation measures for
interval-valued data, evaluating their performance across var-
ious bivariate association patterns and model settings. We
utilize the wearable watch dataset to demonstrate the capa-
bility of our method in processing multi-segment data, a task
that other methods are unable to accomplish. Additionally,
two real-world datasets are used to assess the effectiveness
of our method against other interval correlations in feature
selection. Finally, Section 4 presents our conclusions, sum-
marizing the proposed framework and outlining potential
directions for future research.
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Fig. 1 (a) An example illustrating the correlation between single-
segment intervals, where the interval midpoints exhibit a strong positive
correlation, while the interval lengths show a negative correlation. The
computed correlation values are 0.88 (midpoint-based), 0.86 (sym-
bolic), 0.80 (arithmetic-based), and 0.62 (Hausdorff). (b) An example

demonstrating the correlation between multi-segment intervals and
single-segment intervals. The computed Hausdorff correlation for this
case is 0.299, whereas existing methods fail to compute a valid corre-
lation

2 Hausdorff Correlation

In this section, we begin by introducing the definition of the
Hausdorff metric alongwith its variant expressions. Next, we
incorporate the Fréchet mean and Fréchet variance frame-
work into the interval space equipped with the Hausdorff
distance and establish fundamental theoretical guarantees.
Building upon this foundation, we propose the Hausdorff
covariance, a more general measure of dependency for
random intervals without imposing any assumptions on alge-
braic operations.

2.1 The Hausdorff Distance

Hausdorff distance is a measure of dissimilarity between
two subsets of a metric space (M, d). It is widely applied
in various research fields, including computer vision (Zhao
et al. 2005; Gao et al. 2013), fractal geometry (Min et al.
2007; Chen et al. 2011), and the medical domain (Sun et al.
2018; Karimi and Salcudean 2019), particularly in appli-
cations such as evaluating image registration and medical
segmentation.

Let I denote the collection of all closed and bounded sub-
sets of the metric space (M, d). The Hausdorff distance
is traditionally defined as the minimum expansion range
required to ensure mutual coverage of A and B. Given two
elements A and B ∈ I, let dH (A, B) represent the Haus-
dorff distance between them. The original formulation of the

Hausdorff distance is given by:

dH (A, B) = inf{r ≥ 0 : A ⊆ Br and B ⊆ Ar }, (1)

where Ar = {x ∈ R : d(x, A) ≤ r} represents the r -
envelope of A. An equivalent and more commonly used
formulation expresses theHausdorff distance as follows (Bir-
san and Tiba 2006):

dH (A, B) = max

{
sup
a∈A

d(a, B), sup
b∈B

d(b, A)

}
,

where d(a, B) = inf
b∈B d(a, b) and d(b, A) = inf

a∈A
d(b, a)

represent the minimum distance from a point to the oppos-
ing set. Furthermore, Rockafellar and Wets (2009) provided
another equivalent representation:

dH (A, B) = sup
ω∈A∪B

∣∣∣∣ infa∈A
d (ω, a) − inf

b∈B d (ω, b)

∣∣∣∣ .

Let themetric spaceM = R and I accordingly denote the
set of all nonempty compact intervals on the real number line,
and Ic ⊂ I be the collection of all nonempty, compact, and
convex intervals. It can be formally proved that theHausdorff
distance defines a valid metric on I, satisfying the properties
of the identity of indiscernibles (zero self-distance), positiv-
ity, symmetry, and triangle inequality (Conci and Kubrusly
2018).

Several formal variations of the Hausdorff distance have
been proposed to address different limitations. For instance,
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Dubuisson and Jain (1994) introduced the modified Haus-
dorff distance, which reduces the impact of outliers by
replacing the minimum distance between pairs of points
in the intervals with their mean value. When faced with
unevenly sampled data, Lu et al. (2001) developed the
weightedHausdorff distance, which improves computational
accuracy by assigning different weights to points within the
interval.Additionally, the partialHausdorff distance (Hutten-
locher et al. 1991) has demonstrated effectiveness in handling
impulse noise. For the sake of brevity, we do not delve into
these specific variations here, and we reserve the exploration
of the broader Hausdorff family for future research.

In the single-segment interval case, theHausdorff distance
corresponds to the greatest distance from any point in one
nonempty compact set to the closest point in the other set.
Consequently, it can be explicitly represented as the maxi-
mum distance between the respective endpoints of the two
intervals, as illustrated in Figure 2.

In the multi-segment interval case, the Hausdorff distance
no longer admits an explicit solution. Given any two inter-
vals A, B ∈ I, where one can be expressed as a union of

multiple disjoint sub-intervals, such that A =
m⋃
i=1

[ai , bi ],
the Hausdorff distance between A and B can be determined
using the traditional definition given in Equation (1). To
compute this distance, we employ a binary search strategy
to iteratively identify the minimal range r that satisfies the
condition in Equation (1), subject to a predefined accuracy
threshold. Algorithm 1 summarizes the computation process
for the Hausdorff distance between arbitrary interval struc-
tures. A simple example illustrating the Hausdorff distance
between two multi-segment intervals is provided in Figure
3. For more complex cases, Algorithm 1 can be applied iter-
atively to obtain the desired distance.

Algorithm 1 Hausdorff distance computation between two
intervals
1: Input: Intervals A, B; threshold value ε > 0
2: Initialize: r1 ← max

ω∈A∪B
ω − min

ω∈A∪B
ω; r0 ← r1

Initialized range r0 = r1
3: while r0 > ε do
4: r0 ← r0/2
5: r1 ← r1−r0 when A ⊆ Br1 and B ⊆ Ar1 , otherwise r1 ← r1+r0
6: end while
7: Return: Hausdorff distance r1

2.2 The Hausdorff Mean andVariance

In mathematics and statistics, the Fréchet mean and variance
(Fréchet 1948) extend the classical notions of the centroid
and variance to general metric spaces. These concepts serve
as fundamental tools for characterizing the first- and second-

order properties of a random object within a given metric
space. This framework naturally extends to the space of
intervals equipped with the Hausdorff distance. Given obser-
vations x1, . . . , xn of the random interval X within I, the
Hausdorff-Fréchet, or simply Hausdorff mean and variance
of X are defined as:

x⊕ = argmin
x∈I

1

n

n∑
i=1

d2H (x, xi ),

var⊕(X) = 1

n

n∑
i=1

d2H (x⊕, xi ). (2)

For simplicity, we restrict attention to the case where the
Hausdorff mean x⊕ takes a single-segment form, character-
ized by its intervalmidpointm⊕ and range r⊕. In otherwords,
we limit the optimized domain in Equation (2) to Ic, since
extending it to the full space I will lead to non-uniqueness of
the solution and introduce additional optimized parameters:

x⊕ = argmin
x∈Ic

1

n

n∑
i=1

d2H (x, xi ),

var⊕(X) = 1

n

n∑
i=1

d2H (x⊕, xi ). (3)

The following theorems provide a theoretical justification
for our definitions in Equation (3) under both single- and
multi-segment settings. The detailed proof is provided in the
Supplementary Material.

Theorem 1 (Existence of the Hausdorff mean) Given inter-
vals {xi }ni=1 ⊂ I, there exists an interval in Ic that minimizes
the mean of squares of distances to the sequence {xi }ni=1.

Theorem 2 (Uniqueness of the Hausdorff mean for single-
segment intervals) Given intervals {xi }ni=1 ⊂ Ic with
corresponding interval ranges {ri }ni=1, if the midpoint or
range of x in Equation (3) is fixed, the minimizer x⊕ ∈ Ic is
unique.

Theorem1 establishes that for any given sequence of inter-
vals {xi }ni=1 in I, the Hausdorff mean of single-segment form
can be obtained by minimizing the sum of squared distances.
Furthermore, Theorem 2 ensures that, when all intervals are
single-segment, the optimizer in Equation (3) is uniquely
determined once either the midpoint or the interval length of
the Hausdorff mean is fixed. In practical applications, this
result suggests that one can set the predetermined length
of the Hausdorff mean as the average length of the given
intervals {xi }ni=1 and then optimize the interval midpoint to
minimize the sum of squared distances to {xi }ni=1. Alterna-
tively, one may fix the interval midpoint and optimize the
length accordingly.
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Fig. 2 An illustration of the Hausdorff distance between two single-
segment intervals A and B. We first compute distances from each point
in one interval to the closest point in the other, separately for both

intervals, that is supa∈A infb∈B d(a, b) and supb∈B infa∈A d(a, b). The
Hausdorff distance is then given by the maximum of these computed
values

Theorem 3 (Uniqueness of the Hausdorff mean for multi-
segment intervals) Given intervals {xi }ni=1 ⊂ I with
corresponding interval ranges {ri }ni=1, if the range of x in
Equation (3) is fixed to the average range across all inter-
vals, the minimizer x⊕ ∈ Ic is unique.

Under the multi-segment setting, the uniqueness of the
Hausdorff mean is guaranteed by Theorem 3 when the inter-
val range of the Hausdorff mean is pre-specified. We remark
that since Ic ⊂ I, Theorem 3 reduces to Theorem 2 with
a fixed range when multi-segment intervals degenerate into
single-segment intervals.

A heuristic procedure for computing a feasible Haus-
dorff mean for both single- and multi-segment intervals is
summarized in Algorithm 2. This simplified strategy fixes
the interval range (e.g., set to the average range across all
intervals) and optimizes only the midpoint. An alternative
algorithm based on a joint optimization strategy is provided
in the Supplementary Material in the single-segment set-
ting. The latter alternately updates both the midpoint and
the range, and we show that it converges to the global opti-
mum of Equation (3). However, it incurs substantially higher
computational costs while yielding performance comparable
to Algorithm 2. Further discussion of these two algorithms,
along with their computational complexity and convergence
analysis, is provided in the Supplementary Material.

Algorithm2Computation of theHausdorffmean (simplified
optimization strategy)
1: Input: Interval observations {xi }ni=1 with corresponding interval

ranges {ri }ni=1
2: Compute the mean of the n ranges: r⊕ = 1

n

∑n
i=1 ri

3: Determine the feasible domain of the midpoint: Lm ≤ m ≤ Um ,
where Lm = min

ω∈{xi }ni=1

ω and Um = max
ω∈{xi }ni=1

ω

4: Construct the candidate single-segment interval: x(m) = [m −
r⊕
2 ,m + r⊕

2 ]
5: Optimize the midpoint by solving the problem m⊕ =

argmin
Lm≤m≤Um

1
n

n∑
i=1

d2H (x(m), xi )

6: Return: The Hausdorff mean x⊕ = [m⊕ − r⊕
2 ,m⊕ + r⊕

2 ]

2.3 The Hausdorff Covariance and Correlation

To quantify the dependency between two random intervals
in a more general setting, we introduce a novel correlation
measure, termed Hausdorff correlation, which builds upon
the extended concept of the Hausdorff mean. Consider a
pair of bivariate random intervals (X1, X2)with observations
x11, . . . , x1n and x21, . . . , x2n , respectively. Let x⊕1 and x⊕2

denote their corresponding Hausdorff means. The Hausdorff
covariance between X1 and X2 is then defined as:

Cov(X1, X2) = 1

n

n∑
i=1

{
sgn(Aωi ) sup

ω∈x1i∪x2i∪x⊕1∪x⊕2

|Aω|
}

,

Fig. 3 A simple illustration of
the Hausdorff distance between
two multi-segment intervals A
and B. The distances
supa∈A infb∈B d(a, b) and
supb∈B infa∈A d(a, b) are
indicated in the figure. The
Hausdorff distance is defined as
the maximum of these two
values. This distance can also be
iteratively computed using
Algorithm 1
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(4)

where

Aω =
(

inf
a∈x1i

d(ω, a) − inf
a∈x⊕1

d(ω, a)

)
(

inf
a∈x2i

d(ω, a) − inf
a∈x⊕2

d(ω, a)

)
, (5)

ωi = arg sup
ω∈x1i∪x2i∪x⊕1∪x⊕2

|Aω|. (6)

The proposed Hausdorff covariance is motivated by the
classical definitionof covariance for real-valued randomvari-
ables. It measures the consistency of deviations between
two sets of interval-valued data and their respective means.
Below, we offer some intuitive explanations to facilitate
understanding of this construction. First, the mathematical
form of the Hausdorff covariance closely resembles that of
classical covariance. In particular, sup |Aω| quantifies the
deviation of interval-valued observations from their respec-
tive Fréchet means, and sgn(Aωi ) reflects the directionality
(i.e., sign) of dependence in the interval setting. Second, the
Hausdorff covariance numerically reduces to the classical
covariance when lengths of the interval sequences {x1i }ni=1
and {x2i }ni=1 gradually shrink to zero under certain regularity
conditions. Detailed simulation is provided in the Supple-
mental Material.

Accordingly, the Hausdorff correlation is obtained by nor-
malizing the Hausdorff covariance:

Cor(X1, X2) = Cov(X1, X2)√
var⊕(X1)var⊕(X2)

.

The correlation proposed in our work exhibits several
advantageous properties. Analogously to the standard corre-
lation of random variables, it can be easily proved that when
the interval midpoint and interval range of X1 can be linearly
represented by the intervalmidpoint and interval range of X2,
respectively, Cor(X1, X2) = ±1. Moreover, for any random
interval pair (X1, X2), the following inequality holds, which
is further proved in the Supplementary Material:

|Cor(X1, X2)| =
∣∣∣∣∣

Cov(X1, X2)√
var⊕(X1)var⊕(X1)

∣∣∣∣∣ ≤ 1. (7)

Using such definitions in Equation (4) has two major
advantageswhenextending theFréchetmean-variancenotions
to random intervals. First, the definitions of the Haus-
dorff mean, variance, and covariance are independent of
any specific algebraic operations on intervals or assump-
tions regarding their underlying distributions. This generality
eliminates the need to impose additional algebraic structures
on the set of intervals, making the approachmore flexible and

widely applicable. In particular, the Hausdorff covariance
serves as a novel correlation capable of measuring depen-
dencies betweenmulti-segment intervals. Second, by treating
intervals as random objects, the proposed notions of mean,
variance, and covariance have natural geometric interpreta-
tions within the corresponding interval metric space. The
Hausdorff mean is defined as the minimizer of the mean of
squared Hausdorff distances to the given interval {xi }ni=1,
effectively acting as their centroid. The Hausdorff variance
quantifies the average squared distance from each interval
to the Hausdorff mean, providing a measure of dispersion.
The Hausdorff covariance, in turn, can be interpreted as an
“inner product” between two sequences of intervals, aligning
with the conventional formulation of covariance for random
variables. Specifically, as shown in Figure 4, if the relative
position of x1 with respect to x⊕1 aligns with that of x2 rela-
tive to x⊕2, then the value of Aω in Equation (5) is positive;
conversely, if their relative positions diverge, Aω takes a neg-
ative value.

In terms of computational complexity, the computation of
sup |Aω| requires four grid-based searches, each repeated n
times, yielding an overall complexity of O(n). Therefore, the
computational complexity of the Hausdorff covariance for
both single-segment interval data and multi-segment interval
data is O(n). The details of this derivation are provided in
the supplementary materials.

3 Experimental Results

In this section, we conduct experiments on both synthetic and
real-world datasets to evaluate the performance of conven-
tional interval correlation measures alongside the proposed
Hausdorff correlation. The benchmark methods include the
midpoint correlation, symbolic correlation, and arithmetic-
based correlation. The midpoint correlation method (Bock
and Diday 2000; Birsan and Tiba 2006; Billard 2008) rep-
resents an interval by its midpoint and then calculates the
corresponding Pearson correlation coefficient. The symbolic
correlation method (Billard 2006, 2008) models intervals
using empirical distribution functions and derives covariance
from a functional perspective. The arithmetic-based correla-
tion method (Gil et al. 2007; Sinova et al. 2012) combines
the correlations of the midpoints and the lengths of the inter-
vals, weighing them by their respective standard deviations
to calculate an aggregated measure.

3.1 Synthetic Data

To illustrate the performance of Hausdorff correlation in cap-
turing the interval-valued data structures, we compare cor-
relation estimates obtained from four interval correlations:
midpoint-based, symbolic, arithmetic-based, and Hausdorff
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Fig. 4 (a) An example illustrating a positive Hausdorff correlation
between intervals {x1i } and {x2i }. The intervals in {x1i } and the intervals
in {x2i } have the same positional relationship with respect to their own
Hausdorff Means. In this case, the value of Aω in Equation (5) takes
more positive numbers, making the final correlation sign positive. (b)

An example illustrating a negative Hausdorff correlation between inter-
vals {x1i } and {x2i }. The intervals in {x1i } and the intervals in {x2i } have
the opposite positional relationship with respect to their own Hausdorff
Means. In this case, the value of Aω in Equation (5) takes more negative
numbers, making the final correlation sign negative

correlation.This evaluation is conducted across nine different
association scenarios between two interval-valued samples.

Consider the synthetic dataset� = {(yi , xi )}ni=1 of obser-
vations from two interval-valued variables (Y , X). For each
observation yi (or xi ), its midpoint and range are represented
by the single-valued variables yci , and yri (or x

c
i , x

r
i ), respec-

tively. To construct this dataset, we consider the following
distributions to generate interval samples {(yi , xi )}ni=1 of size
n = 100:

• xci : x
c
i is sampled evenly spaced from 1 to 100;

• xri : x
r
i is sampled evenly spaced from 5 to 50;

• yci Type 1 (negatively correlated with xci ): y
c
i = ai + εi ,

where ai are 100 equally spaced points from 100 to 1 and
εi ∼ N (0, 16);

• yci Type2 (not correlatedwith x
c
i ): y

c
i ∼ Uniform(1, 100);

• yci Type 3 (positively correlated with xci ): y
c
i = ai + εi ,

where ai are 100 equally spaced points from 1 to 100 and
εi ∼ N (0, 16);

• yri Type 1 (negatively correlated with x
r
i ): y

r
i = |ai + εi |,

where ai are 100 equally spaced points from 50 to 5 and
εi ∼ N (0, 5);

• yri Type 2 (not correlatedwith x
r
i ): y

r
i ∼ Uniform(5, 50);

• yri Type 3 (positively correlated with x
r
i ): y

r
i = |ai + εi |,

where ai are 100 equally spaced points from 5 to 50 and
εi ∼ N (0, 5);

With the above settings, the correlation between xci and y
c
i

of type 1, 2, and 3 are −0.88, −0.04, and 0.88, respectively.
The correlation between xri and yri of type 1, 2, and 3 are
−0.95, 0.01, and 0.92, respectively. As depicted in Figure
5, this 3 × 3 graph illustrates that the first, second, and third
columns have yri of type 1, 2, and 3, while the first, second,
and third rows have yci of type 1, 2, and 3, respectively. Thus,

we get nine types of {(yi , xi )}ni=1 samples, eachwith a sample
size n = 100.

In the 3×3matrix of graphs, the diagonal subgraphs illus-
trate that the correlations of intervalmidpoints and lengths are
largely aligned,with all four correlation estimates being quite
similar. In contrast, in the off-diagonal subgraphs, particu-
larly the lower left and upper right, the correlations of interval
midpoints and lengths differ. While the midpoint, symbolic,
and arithmetic correlations primarily emphasize the corre-
lation of interval midpoints, the Hausdorff correlation more
effectively balances the correlations of both interval mid-
points and lengths.

3.2 Analysis ofWearableWatch Dataset

The widespread adoption of smartwatches in the past decade
has provided a convenient and effective means of collecting
physiological time-series data during sleep. These devices
continuously monitor time-series data such as sleep stages,
heart rate, body temperature, and blood oxygen levels. The
Wearable Watch Dataset (Walch 2019), collected in the
work of sleep stage prediction (Walch et al. 2019), provides
minute-level time series data for four sleep stages: wake,
light sleep, deep sleep, and rapid eye movement (REM)
sleep. In addition, heart rate, heart rate variability (HRV),
oxygen saturation, and temperature are recorded per minute.
HRV is characterized by three main characteristics: the root
mean square of successive differences (RMSSD), the inten-
sity of high-frequency heart rate fhigh, and the intensity of
low-frequency heart rate flow. RMSSD quantifies short-term
fluctuations between consecutive heartbeat intervals, provid-
ing insights into the rhythmicity of heart rate. Daily sleep
data are aggregated into multi-segment interval representa-
tions based on the four stages, as illustrated in Figure 6.
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Fig. 5 Comparison betweenmidpoint, symbolic, arithmetic-based, and
Hausdorff correlation (The numbers in the table above are in this order)
for several bivariate association patterns. The black dot indicates the
midpoint of the interval, and the blue area indicates the area formed

by a pair of interval samples. The fourth number in the table of each
sub-graph represents the correlation value calculated by the Hausdorff
correlation. The sub-graph borders on the diagonal are marked in red

For data preprocessing, we select the light sleep stage,
the most predominant sleep phase in segmented sleep, as a
representative of the overall sleep process. To construct data
based on the single segment interval, we extract valueswithin
the 5th and 95th percentile range of HRV, oxygen saturation,
and temperature for each day. The Hausdorff correlations
between segmented sleep and other physiological features
are presented in the following Table 1.

From Table 1, we observe a strong correlation of 0.903
between RMSSD and fhigh in HRV. Regarding Segmented
Sleep, it exhibits a higher correlation with fhigh of 0.299 and
a much lower correlation with flow of 0.006, which aligns

with physiological expectations. Specifically, fhigh reflects
the activity of the parasympathetic nervous system of the
heart,which is known to bemore active during sleep (Burgess
et al. 1997; Zoccoli and Amici 2020).

Figure 7 presents the correlation plots for three pairs
of variables. Figure 7(a) presents the relationship between
RMSSDand fhigh, where bothmidpoints and interval lengths
exhibit a strong positive correlation. In Figure 7(b), the rela-
tionship between Segmented Sleep and fhigh is depicted. As
the positional range of fhigh increases and extends upward,
the total duration of sleep tends to be longer, leading to a
general expansion in the time span. Finally, Figure 7(c) illus-
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Fig. 6 Visualization of daily sleep patterns. Total sleep duration is segmented into four stages: wake, light sleep, deep sleep, and rapid eyemovement
(REM) sleep

Table 1 Hausdorff correlations for variables in the Wearable Watch Dataset. Correlations between Segmented Sleep, Heart Rate, RMSSD, and
other physiological features are reported

Segmented Sleep Heart Rate RMSSD fhigh flow Temperature Oxygen

Segmented Sleep 1 −0.259 0.193 0.299 0.006 0.298 −0.124

Heart Rate −0.259 1 −0.290 −0.195 0.072 −0.038 −0.160

RMSSD 0.193 −0.290 1 0.903 0.025 0.097 0.060

fhigh 0.299 −0.195 0.903 1 0.171 0.015 −0.002

flow 0.006 0.072 0.025 0.171 1 −0.003 −0.091

Temperature 0.298 −0.038 0.097 0.015 −0.003 1 −0.020

Oxygen −0.124 −0.160 0.060 −0.002 −0.091 −0.020 1

trates the relationship between Segmented Sleep and flow,
which shows little evident correlation.

3.3 Feature Selection in Real-World Datasets

In this section, we implement a greedy feature selection strat-
egy focused on maximizing dependence with respect to the
response variable (Song et al. 2012; Lopez-Paz et al. 2013)
using the Life Expectancy Dataset and the Sea level Dataset
(Caldwell et al. 2015; Maharaj et al. 2019). Consistent with
conventional procedures in the feature screening literature
(Zhu et al. 2011; Li et al. 2023b), we begin by applying
existing interval correlation measures to select important
variables, and then evaluate their performance through a
given regression modeling.

The Life Expectancy Dataset comprises life expectancy
and various health-related factors for 193 countries from
2000 to 2015. It includes 19 variables that can potentially
influence life expectancy, including factors related to immu-
nization, mortality, economy, society, and other aspects of
health. To construct interval-valued representations, after
removing three highly autocorrelated variables, we extract
the maximum and minimum values of these 16 variables,
alongwith life expectancy statistics, across each country over
the 15 years. After filtering out incomplete data, we obtain
a final dataset consisting of 133 samples, where both the

response and predictor variables are single-segment inter-
vals.

Figure 8 illustrates the top three features that exhibit
the strongest correlation with life expectancy, as identified
by four different correlation methods: midpoint, symbolic,
arithmetic-based, and Hausdorff correlation. The midpoint,
symbolic, and arithmetic-basedmethods consistently empha-
size the Adult Mortality Rate (the probability of dying
between ages 15 and 60 per 1000 population), the Human
Development Index (HDI), reflecting income-based resource
composition, and years of schooling as the most influen-
tial features. In contrast, the Hausdorff correlation identifies
Gross Domestic Product (GDP) per capita as the primary
determinant of life expectancy, which aligns well with estab-
lished theoretical insights and empirical findings (Acemoglu
and Johnson 2007; Zaman et al. 2017). Additionally, the
Hausdorff correlation uniquely highlights HIV/AIDS as an
important feature, which is not recognized by the other three
methods.

Next, we employ the Constrained Center and Range
Method (CCRM) (Neto and de Carvalho 2010) regression
model to investigate the relationship between life expectancy
and the features selected by four different correlation meth-
ods. To assess the performance of the model, we randomly
split the dataset, distributing 80% for training and 20% for
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Fig. 7 Correlation plots between sleep-related variables. (a) Relationship between RMSSD and fhigh with a Hausdorff correlation 0.903. (b)
Relationship between Segmented Sleep and fhigh with a Hausdorff correlation 0.299. (c) Relationship between Segmented Sleep and flow with a
Hausdorff correlation 0.006

Fig. 8 Top three most important
features that affect life
expectancy, identified by
midpoint, symbolic,
arithmetic-based, and Hausdorff
correlation
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Fig. 9 Tendency on RMSE and
IOR as the number of selected
features increases in Life
Expectancy Dataset and Sea
Level Dataset. Hausdorff
correlation performs better in
most cases

testing. Evaluation is carried out using two key criteria on
the test set:

• Root Mean Square Error (RMSE): The average RMSE
of the interval midpoint and interval length.

• Interval Overlap Ratio (IOR): The overlap ratio between
the predicted intervals and the true intervals. It is a widely
used measure to quantify the differences between inter-
vals (Wheeler et al. 2006; Kabir et al. 2017).

LowerRMSE and higher IOR indicate superior performance,
reflecting a more precise interval estimation.

Figure 9(a) presents the results on the test set as the num-
ber of selected features increases from 2 to 8. As shown in the
figure, increasing the number of selected features improves
model performance across all correlationmethods. However,

the features identified by Hausdorff correlation consistently
yield superior regression performance, underscoring their
effectiveness in capturing key predictors of life expectancy.

The Sea Level Dataset consists of 500 days of observa-
tions collected from 16 ocean monitoring stations around
Australia, recording the daily maximum and minimum sea
levels. These values are used to construct an interval repre-
sentation for each day. In this study, sea level measurements
from the Booby Island observation station are designated as
the dependent variable, while the measurements from the
remaining 15 stations serve as independent variables. Simi-
larly, after removing three highly autocorrelated variables,
the dataset undergoes the same feature selection process,
followed by CCRM regression. Figure 9(b) illustrates the
regression performance as the number of selected features
varies from 2 to 8. The results demonstrate that feature selec-
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tion based onHausdorff correlation consistently outperforms
alternative methods, highlighting its effectiveness in identi-
fying relevant predictors for sea level estimation.

More detailed descriptions of the data experiments are
provided in the Supplementary Material 5.9.

4 Conclusion and Discussion

In this work, we propose Hausdorff correlation as a novel
measure of dependence between two random intervals by
incorporating the Fréchet framework into an interval metric
space equipped with the Hausdorff distance, without tradi-
tional geometric and algebraic structures. By studying the
Fréchet structure of random intervals, the proposed Haus-
dorff correlation offers distinct advantages over existing
alternatives such as symbolic and arithmetic-based correla-
tions. First, Hausdorff covariance is similar to the concept
of regular covariance under an appropriate inner product
and provides a strong geometric interpretation. It quanti-
fies the degree of synchronization between random intervals
and their Hausdorff means. Second, Hausdorff covariance is
a more general dependency measure that imposes no addi-
tional algebraic definitions or distributional assumptions on
interval-valued data. Notably, it applies to arbitrary inter-
val forms, including complexmulti-segment intervals, where
existing methods fail to apply. We validated our method
across various datasets, demonstrating that Hausdorff corre-
lation achieves a superior balance in capturing dependencies
related to bothmidpoints and interval lengths and greatly out-
performs existing correlation measures in real-world feature
selection tasks.

Several promising directions remain for future research.
First, a more detailed investigation of the properties of the
objective function is needed to better understand the condi-
tions ensuringuniqueness of theHausdorffmean, aswell as to
develop more refined optimization procedures. Second, the
framework may be extended to multidimensional interval-
valued data or toHausdorffmeanswithmulti-segment forms,
potentially through computationally efficient variants of the
Hausdorff distance or by incorporating additional optimiza-
tion constraints. Beyond these, the Hausdorff metric space
framework opens new possibilities, such as utilizing Haus-
dorff distance as a loss function in regression models for
interval-valued data, and extending concepts like Hausdorff
mean and covariance to non-parametric interval fitting. These
directions offer exciting potential for advancing interval data
analysis.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-025-10743-
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