
Gaussian Herding across Pens: An Optimal Transport
Perspective on Global Gaussian Reduction for 3DGS

Tao Wang1∗ Mengyu Li2∗ Geduo Zeng1 Cheng Meng1† Qiong Zhang1†

1Center for Applied Statistics, Institute of Statistics and Big Data, Renmin University of China
2 Department of Statistics and Data Science, Tsinghua University

wang_tao@ruc.edu.cn mengyuli@tsinghua.edu.cn geduozeng@ruc.edu.cn
chengmeng@ruc.edu.cn qiong.zhang@ruc.edu.cn

Abstract

3D Gaussian Splatting (3DGS) has emerged as a powerful technique for radiance
field rendering, but it typically requires millions of redundant Gaussian primitives,
overwhelming memory and rendering budgets. Existing compaction approaches
address this by pruning Gaussians based on heuristic importance scores, without
global fidelity guarantee. To bridge this gap, we propose a novel optimal transport
perspective that casts 3DGS compaction as global Gaussian mixture reduction.
Specifically, we first minimize the composite transport divergence over a KD-
tree partition to produce a compact geometric representation, and then decouple
appearance from geometry by fine-tuning color and opacity attributes with far fewer
Gaussian primitives. Experiments on benchmark datasets show that our method
(i) yields negligible loss in rendering quality (PSNR, SSIM, LPIPS) compared to
vanilla 3DGS with only 10% Gaussians; and (ii) consistently outperforms state-
of-the-art 3DGS compaction techniques. Notably, our method is applicable to
any stage of vanilla or accelerated 3DGS pipelines, providing an efficient and
agnostic pathway to lightweight neural rendering. The code is publicly available at
https://github.com/DrunkenPoet/GHAP

3DGSPUP-3DGS GHAP-3DGS (ours)

PSNR: 25.374, SSIM: 0.886, LPIPS: 0.198 PSNR: 27.217, SSIM 0.898, LPIPS 0.211PSNR: 27.614, SSIM: 0.920, LPIPS: 0.155

Figure 1: Visual comparison. When reducing the number of Gaussians by 90%, our method
outperforms other compaction techniques, such as PUP-3DGS, and remains competitive with the
original 3DGS.

1 Introduction

Real-time 3D scene reconstruction and rendering dynamically generates photorealistic 3D represen-
tations from sensor data (e.g., multi-view images, LiDAR) with minimal latency, enabling critical
applications in augmented/virtual reality (AR/VR), autonomous navigation, and immersive me-
dia [1, 2]. The current state-of-the-art, 3D Gaussian Splatting (3DGS) [3], iteratively learns 3D

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

ar
X

iv
:2

50
6.

09
53

4v
2

 [
cs

.C
V

]
 2

3
Se

p
20

25

https://github.com/DrunkenPoet/GHAP
https://arxiv.org/abs/2506.09534v2

anisotropic Gaussian primitives with color and opacity attributes to model these scenes. During
rendering, these 3D Gaussians are projected to 2D screens and α-blended to achieve real-time
photorealistic synthesis.

However, 3DGS faces significant efficiency challenges: its iterative densification process often
produces millions of redundant Gaussians for complex scenes [4, 5, 6]. This inefficiency leads
to high memory/storage costs and increased per-frame rendering time, limiting deployment on
resource-constrained platforms like mobile and AR/VR devices [7].

Figure 2: Comparison of heuristic pruning and our
method. The original mixture (left) with 103 components is
reduced to 5% using either pruning (middle) or our method
(right). Our method better preserves the overall structure.

A common strategy to improve ef-
ficiency is compaction [8, 9, 10,
7]—reducing the number of Gaus-
sians while preserving rendering fi-
delity. Fewer primitives result in re-
duced storage needs and faster ren-
dering, improving per-frame perfor-
mance. This approach is viable be-
cause 3DGS densification inherently
generates redundant primitives [4, 5,
6]. Existing methods achieve com-
paction via pruning or random subset
selection [11, 12, 5, 13, 14, 15, 6, 4, 16]. These strategies naïvely discard Gaussian primitives; while
simple to implement, they are often ineffective. In particular, they tend to lose critical structural
details (as shown in Fig. 1) or distort the underlying geometry (as shown in Fig. 2). Such losses
can degrade rendering quality, particularly in regions with fine-scale features or complex material
properties. These limitations motivate our key question:

How to design an efficient compaction method that preserves 3D spatial and
structural geometry?

To address this, we frame compaction as an optimization problem, where the goal is to approximate the
original 3DGS representation with fewer Gaussians. Our solution leverages a statistical perspective,
treating the scene’s geometric structure as a probabilistic model and employing principled reduction
techniques to preserve fidelity.

(i) Geometric compaction via GMR. We first observe that the geometry of a 3DGS representa-
tion—defined by the positions, covariances, and opacities of its Gaussian primitives—can be
interpreted as a Gaussian mixture model (GMM). Here, the mixture density is a convex combi-
nation of individual Gaussian densities, weighted by their opacities. This formulation naturally
connects 3DGS compaction to Gaussian Mixture Reduction (GMR), a well-studied problem
in statistics where a high-order GMM is approximated by one with fewer components while
minimizing a divergence measure.

(ii) Appearance optimization. While geometry is compacted via GMR, the appearance of the
scene—governed by the color attributes of the Gaussians—must also be preserved. To achieve
this, we decouple the optimization of geometry (position, covariance) and appearance (color,
opacity). After GMR-based compaction, we fine-tune the color and opacity of the reduced set of
Gaussians using the standard 3DGS training pipeline. This two-stage strategy ensures that the
compacted model maintains both geometric accuracy and photorealistic rendering quality.

For GMR, we minimize the composite transportation divergence [17], which is rooted in optimal
transport theory [18, 19] and allows an effective algorithm. We tailor this GMR algorithm (detailed
in Section 3.2.1) so that it scales well in scenes like 3DGS with an extensive amount of Gaussians.
Crucially, our GMR optimizer does not merely select a subset of existing Gaussians; instead, it creates
new primitives that can dynamically adjust their positions and covariances to better approximate the
underlying geometry (as shown in Figure 2). Our method is fundamentally algorithm-agnostic: it
functions as a plug-and-play module that can enhance both the standard 3DGS pipeline and any of its
variants (Section 4), applicable at any stage of training to boost computational efficiency.

To summarize, our contributions are:

2

• We open a new pathway to view 3DGS representations as a Gaussian mixture and perform
compaction from the perspective of Gaussian mixture reduction via optimal transport. This
contrasts with prior compaction methods that ignore geometric structure and often produce
distortions, whereas our approach preserves geometric fidelity, offering a new and impactful
direction for 3DGS.

• We are the first to adapt GMR to 3DGS. We introduce a novel cost function that yields closed-
form, low-cost updates. We also develop a block-wise GMR algorithm guided by a KD-tree,
enabling efficient large-scale scene compaction. These strategies are non-trivial and bridges
theory with practical scalability.

• Our method is post-hoc and compatible with any existing 3DGS pipeline, making it highly practi-
cal and broadly applicable. With minimal overhead, our approach achieves SOTA compaction
performance, both in quality and efficiency.

• Empirical results demonstrate that our method preserves rendering quality at 10% retention ratio.

2 Related Works

Compaction Techniques in 3DGS. 3DGS compaction seeks to minimize the Gaussian count while
preserving image quality. Existing work falls into two operations: densification (where to add) and
pruning (what to drop). Most current approaches rely on per-Gaussian heuristic scores.

For densification, Taming-3DGS [10] ranks candidate Gaussians by combining gradient, pixel
coverage, per-view saliency, and core attributes including opacity, depth, and scale; Color-cued
GS [20] considers the view-independent spherical harmonics coefficient gradient to better capture
color cues; and GaussianPro [9] guides growth using depth and normal maps. In the pruning phase,
LightGaussian [11], Mini-Splatting [12], RadSplat [5], and AtomGS [13] compute an importance
score from each Gaussian’s accumulated ray contribution, typically a mix of volume, opacity,
transmittance, and hit count, and discard the lowest-ranked Gaussians. Gradient-aware variants prune
by per-Gaussian gradients (Trimming-the-Fat) [14] or the second-order sensitivity score derived
from the Hessian matrix (PUP-3DGS) [15]. The score can also be trained via a learnable mask,
as in LP-3DGS [6], Compact3DGS [4], and HAC [16]. Moreover, multi-view consistency criteria
discard Gaussians unseen by keyframes [21] or visible only in real but not virtual views [22]. For a
comprehensive survey of 3DGS compression and compaction, we refer readers to [8, 23].

Despite their success, most existing strategies evaluate each Gaussian independently, leaving open
the question of whether the retained set is truly the best global surrogate. Our work addresses this
gap from a probabilistic perspective via Gaussian mixture reduction.

3DGS from Probabilistic Distribution Point of View. Kheradmand et al. [24] formulate 3DGS
as a Markov chain Monte Carlo process and use stochastic gradient Langevin dynamics to migrate
dropped Gaussians onto retained ones, partially recycling lost information. However, their update
remains pairwise and lacks convergence guarantees under a principled divergence. Moreover, this
scheme is coupled with the original 3DGS pipeline, limiting its generalizability to other variants.

3 Method: Gaussian Herding across Pens

3.1 Probabilistic Scene Representation

Let ϕ(x;µ,Σ) = |2πΣ|−1 exp(−(x− µ)⊤Σ−1(x− µ)) be the PDF of a Gaussian distribution with
mean µ and covariance Σ. A Gaussian mixture with n components is a distribution with density:

ϕn(x) =

n∑
i=1

αiϕ(x;µi,Σi),

where αi are the mixture weights satisfying αi > 01. In the context of 3DGS, let x ∈ R3 be spatial
coordinates and f(x) represent the implicit surface function (i.e., geometric shape and opacity that

1In statistics, Gaussian mixtures are defined with the constraint
∑n

i=1 αi = 1 to ensure the area under the
density function is 1. However, we relax this constraint and consider unnormalized Gaussian mixtures, as in
3DGS, where the integral under the geometric surface need not equal 1.

3

3DGS training module

T steps

Appearance
feature

Geometric
feature

Appearance opt.

T steps

Geometric
feature

Appearance
feature

Gaussians

Blockwise GMR

Geometric
feature

KD-tree partition

B

A

C
E

F G

(0,0,0)
A

B

C

D

E

F

G

(-3,-1,3)

(1,-1.5,-2)

(-4,-2,-1)

(2,1,-1)

(-1,2,1)

(3,5,2)

G
H
AP

Gaussians

Gaussians/block

Gaussians
{αj , cj , µj , Σj}n

j=1

{ᾱj , c̄j , µ̄j , Σ̄j}m
j=1

Figure 3: An illustration of the proposed GHAP approach. The process begins with full-resolution
3DGS training to obtain initial geometric and appearance features. These Gaussians are then spatially
partitioned using a KD-tree and grouped into blocks–analogous to sheep pens. We then perform
blockwise Gaussian Mixture Reduction (GMR) to approximate the geometric shape within each block
using a much smaller number of Gaussians. This step is analogous to the popular kernel herding
method [25]. Finally, a lightweight appearance refinement step further optimizes the appearance
feature of the reduced set. This multi-stage pipeline progressively guides the Gaussians in each
block–analogous to herding across pens–toward a compact and high-fidelity representation.

excludes color). The training process in 3DGS learns opacity parameter αi, location parameter µi,
and shape parameter Σi such that

ϕn(x) ≈ f(x), ∀x ∈ X ,
where X is the 3D scene volume. Therefore, the geometry of the 3D scene can be effectively
represented by a Gaussian mixture. Then, each of these Gaussian primitive is associated with its own
color ci. Both the geometry and appearance attributes are important for high quality rendering.

3.2 Compaction via Optimal Transport

Motivated by the observation that many 3DGS algorithms [4, 5, 6] produce a significant number of
redundant Gaussians during training, we improve rendering efficiency through compaction—reducing
the number of Gaussian primitives to achieve lower memory usage and faster rendering while
preserving visual fidelity. The process consists of two key phases:

1. Geometric Compaction via GMR: Leveraging our probabilistic interpretation, we formulate
compaction as Gaussian Mixture Reduction (GMR) [26], approximating the original Gaussian
mixture with redundant components by one with fewer components. This yields a compacted
geometric representation: ϕ̄m(x) =

∑m
j=1 ᾱjϕ(x; µ̄j , Σ̄j), where m ≪ n. This step modifies

only the Gaussian positions (µ̄j) and covariances (Σ̄j), leaving appearance attributes unchanged.

2. Appearance Optimization: The reduced Gaussians are initialized with appearance attributes (col-
ors, opacities) and fine-tuned for optimal rendering performance. This step optimizes appearance
only, maintaining geometric consistency.

Our approach decouples geometry and appearance optimization while using standard 3DGS training
to preserve quality. Our training pipeline is visualized in Figure 3 and we describe the details below.

3.2.1 Geometric Compaction via GMR

Following Zhang et al. [17], we formulate compaction as minimizing the composite transportation
divergence (CTD) between two Gaussian mixtures:

Definition 1 (Composite transportation divergence). Let c(·, ·) be a divergence between two
Gaussians. The composite transportation divergence (CTD) between two Gaussian mixtures
ϕn(x) =

∑n
i=1 αiϕ(x;µi,Σi) and ϕ′

m(x) =
∑m

j=1 α
′
jϕ(x;µ

′
j ,Σ

′
j) with cost function c(·, ·) is

Tc(ϕn, ϕ
′
m) = inf


n∑

i=1

m∑
j=1

πijc(ϕ(·;µi,Σi), ϕ(·;µ′
j ,Σ

′
j)) :

m∑
j=1

πij = αi,

n∑
i=1

πij = α′
j

 .

4

The CTD generalizes optimal transport [18] to mixtures, treating each component as a discrete
distribution in the space of Gaussian distributions. The cost function measures the cost of moving
one unit of Gaussian from one location to another, and πij measures the corresponding amount of
mass that is being moved. The total cost is proportional to the cost and the mass, and the divergence
is the smallest transportation cost to move the original mixture to the target mixture. The reduced
mixture becomes

{ᾱj , µ̄j , Σ̄j} = argmin
{α′

j ,µ
′
j ,Σ

′
j}
Tc(ϕn, ϕ

′
m). (1)

With this formulation, the Gaussian mixture after compaction has optimal guarantee. The solution
also guides the choice of m to balance compactness and fidelity.

As shown in Zhang et al. [17], (1) can be solved using the effective iterative algorithm in Algorithm 1.

Algorithm 1 GMR via k-means Clustering

1: Initialize {µ̄(0)
j , Σ̄

(0)
j }mj=1

2: for t=1,. . . , do
3: Assignment Step:
4: for i = 1 to n do ▷ O(nm)
5: Assign component i to cluster Cj that mini-

mizes c(ϕ(·;µi,Σi), ϕ(·; µ̄(t−1)
j , Σ̄

(t−1)
j))

6: end for
7: Update Step:
8: for j = 1 to m do ▷ O(nm)

9: Compute new cluster center: µ̄
(t)
j , Σ̄

(t)
j =

argmin
∑

i∈Cj
αic(ϕ(·, µi,Σi), ϕ(·, µ,Σ))

10: end for
11: if no change in assignments then
12: for j = 1 to m do ▷ O(n)
13: Compute weight: ᾱj =

∑
i∈Cj

αi

14: end for
15: break
16: end if
17: end for

The algorithm reduces to a k-means vari-
ant in Gaussian space: 1) The assignment
step follows the same principle as tradi-
tional k-means, but replaces the L2 dis-
tance between vectors with a cost function
c(·, ·) between Gaussian distributions. 2)
The update step generalizes the cluster cen-
ter computation: In traditional k-means,
centers are updated as arithmetic averages
(barycenters w.r.t. L2 distance) of vectors
in each cluster. In this algorithm, cen-
ters become barycenters of Gaussians in
each cluster, minimized w.r.t. cost function
c(·, ·). Thus, standard k-means emerges as
a special case when using L2 distance on
vectorized Gaussian parameters.

While the standard GMR algorithm pro-
vides optimal theoretical guarantees, its
direct application to 3DGS compaction
proves computationally prohibitive. Al-
though the algorithm must converge in fi-
nite steps [17]2, the assignment step in-
volves nm evaluations of the cost function
per iteration. In typical 3D scenes, the number of Gaussians scales as n = Ω(105)3, and even after
95% reduction, each iteration would still require at least 108 operations and memory storage. For the
update step, the computational cost for the cluster center depends on the pre-specified cost function
c(·, ·). The KL divergence considered in Zhang et al. [17] suffers from (a) significant overhead of
computing O(ρs2 log n) covariance matrices inversions, and (b) numerical instability due to small
eigenvalues of covariance matrices. To overcome this challenge, we introduce two key optimizations
designed for 3DGS:

• Blockwise GMR via KD-Tree: To improve computational and memory efficiency during training,
we partition the scene into spatially localized blocks and perform GMR independently within each
block. As demonstrated in Remark 1, this blockwise approach yields significant computational
savings. While both KD-trees [27] and Octrees [28] are effective for spatial partitioning in 3D
space, we employ a KD-tree for two key advantages. First, it produces more balanced partitions
across regions. Second, it avoids unnecessary subdivisions in sparse regions that would waste
computational resources.
Our KD-tree is constructed solely from Gaussian centers {µi}ni=1 (justified by the observed small
eigenvalues of covariance matrices). Each split uses the median coordinate value, creating 2d

blocks at depth d. We set d = ⌊log2(n/s)⌋ to ensure blocks contain at most s Gaussians with
s≪ n, then reduce each block to m = ρs components (ρ = retention ratio).

2In particular, we find that in our experiment, the algorithm converges in only around 6 iterations.
3The an = Ω(bn) (O(bn)) if there exist C ≥ 0 such that an ≥ Cbn (an ≤ Cbn).

5

Remark 1 (Computational Cost Comparison). Our blockwise approach reduces the per-iteration
computational cost from O(ρn2) to O(ρs2) per block.4 With 2depth = O(logn) blocks in total, the
overall complexity becomes O(ρs2 log n). For typical values of n = 105, s = 103 and ρ = 0.05,
this reduces the cost from 108 to approximately 105 operations–a substantial improvement. The
savings become even more pronounced for larger n. Furthermore, the reduction steps can be
executed in parallel across blocks, offering additional computational speedup.

• Efficient Cost Function: We introduce a novel cost function that overcomes the limitations of the
KL divergence used in [17] by being computationally efficient without sacrificing approximation
quality. Our proposed divergence is:

c(ϕ(·;µ,Σ), ϕ(·;µ′,Σ′)) = ∥µ− µ′∥22 + ∥Σ− Σ′∥2F , (2)

which offers three significant advantages: First, it preserves distributional similarity, as Gaussian
distributions are uniquely determined by their mean and covariance. Second, the assignment step
requires only efficient vector and matrix norm computations. Third, the update step simplifies to
calculating weighted averages, thereby avoiding the computationally expensive covariance matrix
inversions required by the KL divergence:

µ̄
(t)
j =

∑
i∈Cj

αiµi∑
i∈Cj

αi
, Σ̄

(t)
j =

∑
i∈Cj

αiΣi∑
i∈Cj

αi
.

3.2.2 Appearance Optimization

Algorithm 2 GHAP: 3DGS Compaction via Block-
wise GMR

1: Input: Trained 3DGS model for T steps to
obtain {(αi, µi,Σi, ci)}ni=1, retention ratio ρ

2: Output: Compacted {(ᾱj , µ̄j , Σ̄j , c̄j)}mj=1
3: Stage 1: Geometric Compaction
4: 1. Build KD-tree from Gaussians {µi}ni=1

with depth d = ⌊log2(n/s)⌋ ▷ O(nd log n)
5: 2. For each leaf block Bk: ▷ O(nmT/2d)
6: Run Algorithm 1 to reduce to ρs Gaussians
7: Stage 2: Appearance Optimization
8: 1. Initialize appearance for each ϕ̄j :
9: c̄j ← ci∗ and ᾱj ← αi∗ where i∗ =

argmini∈[n] ∥µi − µ̄j∥2
10: 2. Fine-tune {ᾱj , c̄j} using standard 3DGS

rendering pipeline for T steps

Following geometric compaction, we initialize
the appearance attributes (opacity and color) of
the compacted Gaussian primitives. For each
primitive in the reduced mixture, we assign the
appearance parameters from its closest counter-
part in the original Gaussian mixture. Using
these initial values, we then optimize the appear-
ance attributes through backpropagation within
the standard 3DGS training pipeline used in the
first stage. We optimize the opacity instead of di-
rectly using the values from the GMR algorithm
because its output weights do not necessarily sat-
isfy the constraint that opacity must be between
0 and 1. Fine-tuning the opacity leads to better
visualization performance.

3.3 Training Details with GHAP Algorithm

Integrating these components, we present our
complete training pipeline in Algorithm 2, called Gaussian Herding Across Pens (GHAP). The process
begins with standard 3DGS optimization for T steps, followed by blockwise GMR. We then freeze
the geometric parameters (µ and Σ) while fine-tuning the appearance attributes (opacity α and
color c) through an additional T -step 3DGS optimization. This procedure can be applied iteratively
throughout training as needed.

4 Experiments

4.1 Experimental Setup

Datasets. For a comprehensive evaluation of GHAP algorithm, we use three real-world datasets: Tanks
& Temples [29], Mip-NeRF 360 [30], and Deep Blending [31], which cover varying levels of detail,
lighting conditions, and scene complexities. For each dataset, we adopt the same scenes as in [8].

• Tanks & Temples: We evaluate two unbounded outdoor scenes, “Truck” and “Train”, both
featuring centered viewpoints.

4Each block reduces from s Gaussian components to ρs.

6

• Mip-NeRF 360: We test on a mix of indoor and outdoor scenes, including “Bicycle”, “Bonsai”,
“Counter”, “Flowers”, “Garden”, “Kitchen”, “Room”, “Stump”, and “Treehill”, all with centered
viewpoints.

• Deep Blending: We include two indoor scenes, “Dr. Johnson” and “Playroom”, where the
viewpoint is directed outward.

Baselines. To evaluate the effectiveness of our proposed method, we compared it against four
strong compaction techniques: LightGaussian [11], PUP-3DGS [15], Trimming the Fat [14], and
MesonGS [32], as well as four end-to-end 3DGS variants: Mini-Splatting(-D) [12], AtomGS [13],
3DGS-MCMC [24], and LocoGS [33]. Notably, Mini-Splatting-D and AtomGS were employed
as backbone models in our approach, while the other variants were used for direct comparative
evaluation against the compaction methods. A consistent evaluation protocol was established to
ensure fair and reliable conclusions. For post-training compaction methods applicable to pre-trained
models–including GHAP, LightGaussian, PUP-3DGS, Trimming the Fat, and MesonGS–we initialized
all from the same backbone model (trained using vanilla 3DGS, Mini-Splatting-D, or AtomGS for 15k
iterations) and applied their respective compaction procedures directly, excluding any compression-
specific modules. All models subsequently underwent identical fine-tuning for 15k iterations to
achieve the target retention ratio. For the other end-to-end variants (MiniSplatting, 3DGS-MCMC
and LocoGS), we executed training for 30k iterations under their default configurations. Detailed
experimental steps for each method can be found in the appendix.

Evaluation Metrics. We assess 3DGS compaction using standard metrics for rendering quality. We
report: (1) PSNR, measuring pixel-level accuracy; (2) SSIM, evaluating perceptual similarity based
on luminance, contrast, and structure; and (3) LPIPS, capturing perceptual distance via a learned
model. Higher PSNR/SSIM and lower LPIPS indicate better quality. For each method, we also report
the corresponding number of Gaussian primitives.

4.2 Quantitative Results

We first show that our approach outperforms other SOTA compaction techniques. Second, we
demonstrate the effectiveness of our GHAP compaction method as a plug-in module within 3DGS and
its variants. We present the experimental results followed by our key findings.

Comparison with SOTA. We compare our method against a comprehensive set of baselines, which
can be categorized into two groups:

• End-to-End Compact 3DGS Variants: Mini-Splatting [12], 3DGS-MCMC [24], and
LocoGS [33]. Note that for LocoGS, the final number of Gaussians is not a user-controllable
parameter.

• Post-Training Compaction Baselines: LightGaussian [11], PUP-3DGS [15], Trimming the
Fat [14], and MesonGS [32]. These methods all use a standard 3DGS backbone and apply
pruning-based techniques for compaction.

Our approach is evaluated in two configurations: 3DGS+GHAP and MiniSplatting+GHAP. The
former uses the same vanilla 3DGS backbone and 10% retention rate as the pruning baselines
for a direct comparison of compaction strategies. The latter replaces the built-in pruning step in
Mini-Splatting with our GHAP algorithm to demonstrate its effectiveness on a different backbone.

Quantitative results are summarized in Table 1, with methods grouped by their final primitive count.
As expected, LocoGS achieves strong performance due to its larger primitive count. Among methods
with comparable primitive counts (Group 2), our 3DGS+GHAP achieves superior performance in
SSIM and PSNR, with a marginally lower LPIPS score. The advantage of our compaction strategy is
further evident when using the Mini-Splatting backbone. Our MiniSplatting+GHAP outperforms
other compaction-based approaches while often using fewer primitives. As shown in Fig. 4 (left), this
performance lead is consistent across a wide range of retention ratios, not just at ρ = 0.1.

Runtime & Memory Usage Comparison. Crucially, the improved performance of our method does
not come at a computational cost. As depicted in Fig. 4 (middle), our method’s runtime is faster than
all baselines except the exceptionally swift Trimming the Fat. While our method exhibits a slightly
higher memory footprint (in Fig. 4 right) during compaction due to pairwise distance computation in
each KD-tree block, the difference is not substantial (less than an order of magnitude).

7

Table 1: Quantitative comparison of rendering quality against SOTA methods. Our method
(GHAP), applied to two different backbones (3DGS and Mini-Splatting), consistently matches or
surpasses pruning-based baselines, even at a low retention rate (10%), while maintaining competitive
runtime and memory usage. The best results for a given number of Gaussians are shown in bold;
second best are underlined.

Method
Tanks&Temples MipNeRF-360 Deep Blending

SSIM↑ PSNR↑ LPIPS↓ k Gaussians SSIM↑ PSNR↑ LPIPS↓ k Gaussians SSIM↑ PSNR↑ LPIPS↓ k Gaussians

Vanilla 3DGS 0.853 23.785 0.169 1577 0.813 27.554 0.221 2627 0.907 29.816 0.238 2475
LocoGS 0.843 23.655 0.191 571 0.798 27.049 0.257 674 0.903 29.972 0.261 529

3DGS+GHAP (ours) 0.818 23.312 0.242 157 0.764 26.404 0.314 263 0.905 29.647 0.264 248
LightGaussian 0.756 22.113 0.306 158 0.735 25.674 0.331 263 0.869 28.010 0.327 248
PUP-3DGS 0.767 21.519 0.280 158 0.753 25.332 0.309 262 0.895 29.153 0.274 248
Trimming the Fat 0.776 21.535 0.293 156 0.731 25.255 0.343 263 0.887 28.056 0.302 247
MesonGS 0.811 20.714 0.208 157 0.773 24.924 0.264 263 0.896 28.693 0.264 248
3DGS-MCMC 0.779 22.141 0.282 157 0.763 25.957 0.309 263 0.885 28.976 0.298 248

MiniSplatting 0.799 22.661 0.265 78 0.759 26.022 0.318 111 0.895 29.395 0.289 125
MiniSplatting+GHAP (ours) 0.835 23.232 0.198 79 0.802 27.090 0.250 112 0.909 30.042 0.254 127

10 20 30 40 50
Retention Ratio (%)

21

22

23

PS
N

R
 (d

B
)

10 20 30 40 50
Retention Ratio (%)

0

5

10

15

20

25

Ti
m

e
 (s

)

10 20 30 40 50
Retention Ratio (%)

3.0

3.5

4.0

4.5

5.0

M
em

or
y

 (G
B

)

GHAP (ours)
LightGaussian
PUP-3DGS
Trimming the Fat
MesonGS

Figure 4: Comparison of compaction methods on the Tanks & Temples dataset. Left: Rate-
Distortion (RD) curves; middle: computational time, and right: memory consumption.

As a Plug-In Compaction Method. Our method can be used as a plug-in compaction method in
various 3DGS training algorithms. This demonstrates the broad applicability of our proposed method.
To verify this, we apply our compaction method within various 3DGS pipelines. Specifically, we
consider three representative variants as the backbone: 3DGS [3] , AtomGS [13], and Mini-Splatting-
D [12]. Each of them employs a distinct densification strategy, and our method can be directly
embedded into the pipeline without extensive engineering effort. For each backbone, we evaluate
performance under two retention ratios (10% and 20%). Tab. 2 summarizes our experimental results.

Table 2: Quantitative results with different backbones. The compaction performance of our GHAP
method when used with different 3DGS variants as backbones under varying retention ratios.

Backbone ρ
Tanks&Temples MipNeRF-360 Deep Blending

SSIM↑ PSNR↑ LPIPS↓ k Gaussians SSIM↑ PSNR↑ LPIPS↓ k Gaussians SSIM↑ PSNR↑ LPIPS↓ k Gaussians

3DGS-30k 10% 0.818 23.312 0.242 157 0.764 26.404 0.314 263 0.905 29.647 0.264 248
20% 0.835 23.615 0.212 314 0.788 26.973 0.275 526 0.907 29.864 0.252 596
100% 0.853 23.785 0.169 1577 0.813 27.554 0.221 2627 0.907 29.816 0.238 2475

Mini-Splatting-D 10% 0.835 23.232 0.198 313 0.802 27.090 0.250 357 0.909 30.042 0.254 331
20% 0.855 23.403 0.171 626 0.821 27.310 0.214 614 0.912 30.170 0.238 662
100% 0.848 23.338 0.140 3132 0.832 27.486 0.176 3578 0.907 29.980 0.211 3316

AtomGS 10% 0.793 22.988 0.274 189 0.764 26.535 0.307 293 0.899 29.347 0.282 271
20% 0.812 23.282 0.240 378 0.788 27.025 0.269 586 0.902 29.347 0.268 542
100% 0.814 23.289 0.235 1897 0.796 27.135 0.251 2928 0.902 29.314 0.267 2709

The quantitative results in Tab. 2 demonstrate that our method effectively preserves the backbone
models’ visual quality, even at an extreme retention rate of 10%. Notably, on some scenes (highlighted
in bold), the compacted model’s performance surpasses that of the uncompacted backbone.

Beyond quantitative metrics, we provide a qualitative analysis by visualizing multiple scenes before
and after compaction in Fig. 5. As evidenced in the figure, our method successfully preserves
rendering quality across most scenes while using only 10% of the Gaussian primitives. Interestingly,

8

truck SSIM:0.92, PSNR:27.614,
LPIPS:0.155

truck SSIM: 0.898, PSNR:
27.217, LIPIS: 0.211

playroom SSIM: 0.943, PSNR:
34.042, LIPIS: 0.195

playroom SSIM: 0.939, PSNR:
33.542, LPIPS: 0.225

drjohnson SSIM:0.940,
PSNR:32.621, LPIPS:0.167

drjohnson SSIM:0.942,
PSNR:32.77, LPIPS:0.194

kitchen SSIM: 0.941, PSNR:
24.476, LPIPS:0.101

kitchen SSIM: 0.946, PSNR:
31.449, LPIPS: 0.106

bonsai SSIM:0.957,
PSNR:34.018, LPIPS:0.133

bonsai SSIM:0.94,
PSNR:32.449, LPIPS:0.175

bicycle SSIM:0.569,
PSNR:19.904, LPIPS:0.317

bicycle SSIM:0.529,
PSNR:19.461, LPIPS:0.417

3D
GS

-3
0K

M
in

i-S
pl

at
tin

g-
D

At
om

-G
S

Before After (! = 0.1) Before After (! = 0.1)

Figure 5: Visual Quality Before and After Compaction. Visual results for various scenes under
different 3DGS backbones, compacted to 10% of their primitives using our GHAP method. Our
approach preserves rendering quality with negligible loss. In some cases (e.g., “Kitchen”), compaction
even improves quality by regularizing an over saturated Gaussian distribution.

in certain cases, our compaction not only preserves but surpasses the original quality. A representative
example is the “Kitchen” scene (Mini-Splatting-D backbone). We conjecture this improvement
occurs because Mini-Splatting-D lacks a pruning mechanism, often generating an over saturated
set of Gaussians that introduce visual artifacts (e.g., the unnatural shadows in the lower-left region).
Our method acts as a global regularizer, mitigating this issue by reducing unnecessary density
while improving the overall expressiveness and preserving the underlying 3D structure. Naturally,
our approach is inherently limited by the quality of its input. If the original model suffers from
significant artifacts due to a lack of primitives in certain regions, our compaction cannot resolve these
fundamental issues. This limitation is demonstrated in the “Bicycle” scene, where artifacts present in
the Atom-GS backbone persist after compaction.

4.3 Ablation Studies

Influence of KD Tree Depth. To validate the effectiveness of the KD-tree partitioning strategy, we
provide an ablation study on it. Due to the large scale of the three primary datasets, low KD-tree depths
result in an excessive number of points per block, making it infeasible to run the GMR algorithm.
Therefore, we conduct ablation experiments on the smaller mic scene from NeRF-Synthetic. Results
in Fig. 6 show that increasing KD-tree depth reduces memory usage and runtime, while PSNR first
improves and then declines. This indicates that moderately finer partitions allow GMR to compact
regions more effectively, whereas overly fine splits may fragment primitives and degrade quality.

Loss Function Design. As shown in Tables 1 and 2, our method exhibits a slight underperformance
on the LPIPS metric. To address this, we investigate whether incorporating an LPIPS loss term can
yield improvements.

Our baseline loss function follows the vanilla 3DGS formulation, using an L1-to-SSIM ratio of 8:2.
We experiment with two new weighting schemes that include LPIPS: (1) L1:SSIM:LPIPS = 8:1:1,
and (2) L1:SSIM:LPIPS = 6:2:2. The results of this ablation study on the Tanks&Temples dataset are
shown in Fig. 7 (with additional results in the Appendix). Our analysis reveals a trade-off between

9

0 2 4 6
KD Tree Depth

14

15

16

PS
N

R
 (d

B
)

0 2 4 6
KD Tree Depth

3

4

5

6

7

R
un

tim
e

 (s
)

0 2 4 6
KD Tree Depth

3.0

3.2

3.4

3.6

M
em

or
y

 (G
B

)

Figure 6: Hyperparameters. The impact of KD tree depth on runtime performance, memory
footprint, and rendering quality.

perceptual and distortion metrics: increasing the weight of the LPIPS loss improves LPIPS scores but
leads to a slight deduction in PSNR and SSIM.

0 10 20
LPIPS Weight (%)

0.80

0.81

SS
IM

0 10 20
LPIPS Weight (%)

23.0

23.1

23.2

23.3

PS
N

R
 (d

B
)

0 10 20
LPIPS Weight (%)

0.21

0.22

0.23

0.24

LP
IP

S

Figure 7: Comparison of different loss weights. A trade-off between perceptual and distortion
metrics.

GMR versus Random Subsampling. We conduct an ablation study on the Tanks&Temples dataset
to evaluate the contribution of each stage in our pipeline: geometric compaction and appearance opti-
mization. A random subsampling baseline is included to assess the effectiveness of our design choices.

Table 3: Ablation study. Mean PSNR, SSIM, and
LPIPS on the Tanks and Temples dataset at each
stage of GHAP pipeline, with random subsampling
as a control. Each operation is applied cumula-
tively to all subsequent stages.

Method Tanks&Temples

SSIM↑ PSNR↑ LPIPS↓
3DGS-15K 0.839 23.084 0.194

+ 10% GHAP Compaction 0.502 14.015 0.483
+ 10% Random Compaction 0.333 9.573 0.555

+15K Fine-tuning 0.818 23.312 0.242
+15K Fine-tuning 0.712 21.312 0.282

The results, presented in Table 3, compare two
compaction schemes followed by the same fine-
tuning procedure. Our findings demonstrate that:
first, our compaction procedure is significantly
more effective than random subsampling and
other pruning baselines (as shown in Tab. 1).
Second, the subsequent appearance optimization
stage provides substantial quantitative improve-
ments for both compaction approaches. The
significant performance gain over the baseline
validates the necessity and effectiveness of both
stages in our proposed pipeline.

5 Conclusion and Discussion

We propose an optimal transport-based Gaussian
mixture reduction framework for 3D Gaussian Splatting, achieving compact yet faithful represen-
tations. By minimizing composite transport divergence with appearance fine-tuning, our method
preserves high visual fidelity while retaining only 10% of Gaussians, outperforming prior compaction
techniques. The framework scales efficiently via block-wise KD-tree partitioning and integrates
seamlessly with diverse 3DGS pipelines.

Future directions include enhancing robustness across challenging scene types, incorporating percep-
tual objectives, developing multi-scale and overlap-aware partitioning, adopting auto-tuned schedules,
and extending to dynamic 3DGS for real-time temporal rendering.

10

Acknowledgments and Disclosure of Funding

Qiong Zhang is supported by the National Natural Science Foundation of China Grant 12301391.
The authors would like to thank the anonymous reviewers for their constructive suggestions.

References
[1] Ben Fei, Jingyi Xu, Rui Zhang, Qingyuan Zhou, Weidong Yang, and Ying He. 3D Gaussian

splatting as new era: A survey. IEEE Transactions on Visualization and Computer Graphics,
2024.

[2] Guikun Chen and Wenguan Wang. A survey on 3D Gaussian splatting. arXiv preprint
arXiv:2401.03890, 2024.

[3] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3D Gaussian
splatting for real-time radiance field rendering. ACM Transactions on Graphics, 42(4):1–14,
2023.

[4] Joo Chan Lee, Daniel Rho, Xiangyu Sun, Jong Hwan Ko, and Eunbyung Park. Compact 3D
Gaussian representation for radiance field. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 21719–21728, 2024.

[5] Michael Niemeyer, Fabian Manhardt, Marie-Julie Rakotosaona, Michael Oechsle, Daniel
Duckworth, Rama Gosula, Keisuke Tateno, John Bates, Dominik Kaeser, and Federico Tombari.
RadSplat: Radiance field-informed Gaussian splatting for robust real-time rendering with 900+
FPS. arXiv preprint arXiv:2403.13806, 2024.

[6] Zhaoliang Zhang, Tianchen Song, Yongjae Lee, Li Yang, Cheng Peng, Rama Chellappa,
and Deliang Fan. LP-3DGS: Learning to prune 3D Gaussian splatting. Advances in Neural
Information Processing Systems, 38, 2024.

[7] Kerui Ren, Lihan Jiang, Tao Lu, Mulin Yu, Linning Xu, Zhangkai Ni, and Bo Dai. Octree-GS:
Towards consistent real-time rendering with LOD-structured 3D Gaussians. arXiv preprint
arXiv:2403.17898, 2024.

[8] Milena T Bagdasarian, Paul Knoll, Yi-Hsin Li, Florian Barthel, Anna Hilsmann, Peter Eisert,
and Wieland Morgenstern. 3DGS.zip: A survey on 3D Gaussian splatting compression methods.
arXiv preprint arXiv:2407.09510, 2024.

[9] Kai Cheng, Xiaoxiao Long, Kaizhi Yang, Yao Yao, Wei Yin, Yuexin Ma, Wenping Wang, and
Xuejin Chen. GaussianPro: 3D Gaussian splatting with progressive propagation. In Forty-first
International Conference on Machine Learning, 2024.

[10] Saswat Subhajyoti Mallick, Rahul Goel, Bernhard Kerbl, Markus Steinberger, Francisco Vicente
Carrasco, and Fernando De La Torre. Taming 3DGS: High-quality radiance fields with limited
resources. In SIGGRAPH Asia 2024 Conference Papers, pages 1–11, 2024.

[11] Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, Dejia Xu, Zhangyang Wang, et al. Light-
Gaussian: Unbounded 3D Gaussian compression with 15x reduction and 200+ FPS. Advances
in Neural Information Processing Systems, 37:140138–140158, 2024.

[12] Guangchi Fang and Bing Wang. Mini-splatting: Representing scenes with a constrained number
of Gaussians. In European Conference on Computer Vision, pages 165–181. Springer, 2024.

[13] Rong Liu, Rui Xu, Yue Hu, Meida Chen, and Andrew Feng. AtomGS: Atomizing Gaussian
splatting for high-fidelity radiance field. arXiv preprint arXiv:2405.12369, 2024.

[14] Muhammad Salman Ali, Maryam Qamar, Sung-Ho Bae, and Enzo Tartaglione. Trimming the fat:
Efficient compression of 3D Gaussian splats through pruning. arXiv preprint arXiv:2406.18214,
2024.

[15] Alex Hanson, Allen Tu, Vasu Singla, Mayuka Jayawardhana, Matthias Zwicker, and Tom
Goldstein. PUP 3D-GS: Principled uncertainty pruning for 3D Gaussian splatting. arXiv
preprint arXiv:2406.10219, 2024.

11

[16] Yihang Chen, Qianyi Wu, Weiyao Lin, Mehrtash Harandi, and Jianfei Cai. HAC: Hash-grid
assisted context for 3D Gaussian splatting compression. In European Conference on Computer
Vision, pages 422–438. Springer, 2024.

[17] Qiong Zhang, Archer Gong Zhang, and Jiahua Chen. Gaussian mixture reduction with composite
transportation divergence. IEEE Transactions on Information Theory, 70(7):5191–5212, 2023.

[18] Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data
science. Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019.

[19] Cédric Villani. Optimal Transport: Old and New. Springer Berlin, Heidelberg, 2009.

[20] Sieun Kim, Kyungjin Lee, and Youngki Lee. Color-cued efficient densification method for
3D Gaussian splatting. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 775–783, 2024.

[21] Hidenobu Matsuki, Riku Murai, Paul HJ Kelly, and Andrew J Davison. Gaussian splatting
SLAM. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pages 18039–18048, 2024.

[22] Yiming Ji, Yang Liu, Guanghu Xie, Boyu Ma, Zongwu Xie, and Hong Liu. NEDS-SLAM: A
neural explicit dense semantic SLAM framework using 3D Gaussian splatting. IEEE Robotics
and Automation Letters, 9(10):8778–8785, 2024.

[23] Yanqi Bao, Tianyu Ding, Jing Huo, Yaoli Liu, Yuxin Li, Wenbin Li, Yang Gao, and Jiebo Luo.
3D Gaussian splatting: Survey, technologies, challenges, and opportunities. IEEE Transactions
on Circuits and Systems for Video Technology, 2025.

[24] Shakiba Kheradmand, Daniel Rebain, Gopal Sharma, Weiwei Sun, Yang-Che Tseng, Hossam
Isack, Abhishek Kar, Andrea Tagliasacchi, and Kwang Moo Yi. 3D Gaussian splatting as
Markov Chain Monte Carlo. Advances in Neural Information Processing Systems, 37:80965–
80986, 2024.

[25] Yutian Chen, Max Welling, and Alexander J. Smola. Super-samples from kernel herding. CoRR,
abs/1203.3472, 2012.

[26] David F Crouse, Peter Willett, Krishna Pattipati, and Lennart Svensson. A look at Gaussian
mixture reduction algorithms. In 14th International Conference on Information Fusion, pages
1–8. IEEE, 2011.

[27] Jon Louis Bentley. Multidimensional binary search trees used for associative searching. Com-
munications of the ACM, 18(9):509–517, 1975.

[28] Donald Meagher. Geometric modeling using octree encoding. Computer graphics and image
processing, 19(2):129–147, 1982.

[29] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and temples: Bench-
marking large-scale scene reconstruction. ACM Transactions on Graphics (ToG), 36(4):1–13,
2017.

[30] Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George Drettakis, and Gabriel
Brostow. Deep blending for free-viewpoint image-based rendering. ACM Transactions on
Graphics (ToG), 37(6):1–15, 2018.

[31] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-
nerf 360: Unbounded anti-aliased neural radiance fields. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 5470–5479, 2022.

[32] Shuzhao Xie, Weixiang Zhang, Chen Tang, Yunpeng Bai, Rongwei Lu, Shijia Ge, and Zhi Wang.
Mesongs: Post-training compression of 3d gaussians via efficient attribute transformation. In
European Conference on Computer Vision, pages 434–452. Springer, 2024.

[33] Seungjoo Shin, Jaesik Park, and Sunghyun Cho. Locality-aware gaussian compression for fast
and high-quality rendering. arXiv preprint arXiv:2501.05757, 2025.

12

[34] Yongxin Chen, Tryphon T Georgiou, and Allen Tannenbaum. Optimal transport for Gaussian
mixture models. IEEE Access, 7:6269–6278, 2018.

[35] Julie Delon and Agnès Desolneux. A Wasserstein-type distance in the space of Gaussian
mixture models. SIAM Journal on Imaging Sciences, 13(2):936–970, 2020.

[36] Shoukang Hu, Tao Hu, and Ziwei Liu. GauHuman: Articulated Gaussian splatting from
monocular human videos. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 20418–20431, 2024.

[37] Shunyuan Zheng, Boyao Zhou, Ruizhi Shao, Boning Liu, Shengping Zhang, Liqiang Nie, and
Yebin Liu. GPS-Gaussian: Generalizable pixel-wise 3D Gaussian splatting for real-time human
novel view synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 19680–19690, 2024.

[38] Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang Zeng. DreamGaussian: Generative
Gaussian splatting for efficient 3D content creation. In The Twelfth International Conference on
Learning Representations, 2024.

[39] Xiaoyu Zhou, Zhiwei Lin, Xiaojun Shan, Yongtao Wang, Deqing Sun, and Ming-Hsuan
Yang. DrivingGaussian: Composite Gaussian splatting for surrounding dynamic autonomous
driving scenes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 21634–21643, 2024.

[40] Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu,
Qi Tian, and Xinggang Wang. 4D Gaussian splatting for real-time dynamic scene rendering. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
20310–20320, 2024.

[41] Pinxuan Dai, Jiamin Xu, Wenxiang Xie, Xinguo Liu, Huamin Wang, and Weiwei Xu. High-
quality surface reconstruction using Gaussian surfels. In ACM SIGGRAPH 2024 Conference
Papers, pages 1–11, 2024.

[42] Yiwen Chen, Zilong Chen, Chi Zhang, Feng Wang, Xiaofeng Yang, Yikai Wang, Zhongang Cai,
Lei Yang, Huaping Liu, and Guosheng Lin. GaussianEditor: Swift and controllable 3D editing
with Gaussian splatting. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 21476–21485, 2024.

13

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claim are summarized in Section 1 and Figure 1, Section 3 and
Section 4 offer detailed explainations.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We include the limitations of our work in Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

14

Justification: We have stated all assumptions explicitly within the theorem and include the
complete proof of our theoretical results in Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We explained our settings and hyperparameters in Section 4 and Appendix .
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

15

Answer: [Yes]
Justification: The data is open-source and the GitHub link is provided.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We placed the detailed experimental settings of the experiments in Section 4
and the Appendix of the paper and the complete details with the code in the supplementary
materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We show results in Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments were conducted on a server with 256 GB RAM and 64 cores
Intel ® Xeon ® Gold 6330 CPU, and a standard workstation equipped with a single NVIDIA
RTX 3090 GPU.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper complies with the NeurIPS Code of
Ethics in all aspects.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This paper proposes a novel method of compaction for 3D Gaussian Splatting,
which is broadly applicable to 3D real-time radiance field rendering. Its potential impact is
further analyzed in Section 5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

17

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper involves no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have ensured that all assets used in this paper are properly cited and their
owners credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

18

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our implementation code is available in supplementary materials.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

19

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The development of the core method in this research did not involve LLMs as
any important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

Appendix

A More Details about the Blockwise GMR Compaction

A.1 Introduction to Optimal Transport (OT)

The Optimal Transport (OT) problem dates back to 1781, when French mathematician Gaspard
Monge (1746–1818) first formulated it as finding the minimal-cost way to move sand into a hole.
This “transport plan” minimizes the transportation cost, hence the term “optimal transport”. The
original formulation is known as Monge’s problem. In 1947, Russian economist Leonid Kantorovich
(1912–1986) relaxed Monge’s formulation, leading to the so-called Monge-Kantorovich problem.

Specifically, let P and Q be two distributions over a metric space X , let c : X × X → R+ be a cost
function, and let the coupling

Π(P,Q) =

{
π(x, y) :

∫
π(dx, ·) = Q(·),

∫
π(·, dy) = P (·)

}
be the set of joint distributions with marginals P and Q. For any cost function c, the total transportation
cost induced by a plan π ∈ Π(P,Q) is defined as

Ic(π) =
∫
X×X

c(x, y)π(dx, dy).

Here, π(x, y) indicates how much “mass” is transported from x to y. The first constraint,∫
π(x, dy) = P (x), ensures that the mass at location x is spread over X , while the second constraint,∫
π(dx, y) = Q(y), ensures that the destination at y receives the required mass. The OT problem

seeks the optimal plan
π∗ = argmin {Ic(π) : π ∈ Π(P,Q)} ,

minimizing the transportation cost. The corresponding minimal cost,

Tc(P,Q) = Ic(π∗),

induces a divergence between P and Q. This OT divergence provides a principled way to mea-
sure distributional similarity, enabling applications in density matching, generative modeling, and
dimensionality reduction.

The optimal plan π∗ and OT divergence typically lack closed-form solutions. Numerical algorithms
[18] are used to compute the OT between discrete measures. When P and Q are discrete, the OT
divergence reduces to:

20

https://neurips.cc/Conferences/2025/LLM

Example 1 (OT Divergence Between Discrete Distributions). For P =
∑n

i=1 unδxn and Q =∑m
j=1 vmδym

, the OT divergence is

Tc(P,Q) = min


n∑

i=1

m∑
j=1

πijc(xi, yj) :

n∑
i=1

πij = vj ,

m∑
j=1

πij = ui

 . (3)

Exact solutions can be found via linear programming, while approximations are obtained using
algorithms like Sinkhorn.

A.2 Relationship Between Composite Transportation Divergence and OT

The Composite Transportation Divergence (CTD) [34, 35] extends OT to Gaussian mixtures. For two
mixtures ϕn =

∑n
i=1 αiϕ(·;µi,Σi) and ϕ′

m =
∑m

j=1 α
′
jϕ(·;µ′

j ,Σ
′
j), the CTD is:

Tc(ϕn, ϕ
′
m) = inf


n∑

i=1

m∑
j=1

πijc(ϕ(·;µi,Σi), ϕ(·;µ′
j ,Σ

′
j)) :

m∑
j=1

πij = αi,

n∑
i=1

πij = α′
j

 ,

Comparing this with the discrete OT divergence (3), the CTD treats Gaussian mixtures as discrete
distributions over the space of Gaussians, defining the divergence as the OT between them.

To illustrate, consider n warehouses and m factories in the space of Gaussian distributions F . The ith
warehouse, at ϕ(·;µi,Σi), holds αi units of material, while the jth factory, at ϕ(·;µ′

j ,Σ
′
j), requires

α′
j units. The cost to transport material from i to j is c(ϕ(·;µi,Σi), ϕ(·;µ′

j ,Σ
′
j)), and πij ≥ 0

denotes the transported amount. The total cost under plan π is
∑

i,j πijc(ϕ(·;µi,Σi), ϕ(·;µ′
j ,Σ

′
j)).

The coupling set Π(α, α′) = {πij :
∑m

j=1 πij = αi,
∑n

i=1 πij = α′
j} ensures: (a) correct material

removal from warehouses, and (b) correct delivery to factories. The OT problem seeks the plan
π∗ ∈ Π(α, α′) minimizing the total cost. The minimal cost corresponds to the CTD between the
mixtures, quantifying the optimal transport cost between them.

Our compaction method leverages this interpretation, approximating a mixture with fewer Gaussians
by minimizing their CTD-based dissimilarity.

A.3 Algorithm Intuition

At first glance, the optimization problem in (1) is bilevel: the OT plan must be found for any candidate
{ᾱj , µ̄j , Σ̄j}mj=1, and the objective must be minimized. However, as shown by Zhang et al. [17], this
simplifies with a clear interpretation. The column-wise marginal constraints on π are redundant, and
each Gaussian primitive (µi,Σi) transports its full mass to its “closest” counterpart. The optimal plan
thus corresponds to clustering {(µi,Σi)}ni=1 into m clusters {Cj}mj=1, with the original Gaussians
forming cluster “barycenters”. Mathematically, the simplified program is:

min


m∑
j=1

∑
i∈Cj

πijc(ϕ(·;µi,Σi), ϕ(·; µ̄j , Σ̄j)) : [n] = C1 ⊔ · · · ⊔ Cm

 ,

where ⊔ denotes disjoint union. The optimal plan has a closed form:

πij =

{
αi if j = argmink c

(
ϕ(·;µi,Σi), ϕ(·; µ̄k, Σ̄k)

)
,

0 otherwise.

With this, π and the reduced mixture parameters can be updated alternately, formalized in the
following k-means-like algorithm:

• Assignment Step: Each Gaussian ϕ(·;µi,Σi) is assigned to cluster Cj by minimizing
c(ϕ(·;µi,Σi), ϕ(·; µ̄j , Σ̄j)), analogous to k-means’ nearest-centroid assignment.

• Update Step: For the cost function

c(ϕ, ϕ′) = ∥µ− µ̄∥22 + ∥Σ− Σ̄∥2F ,

21

the parameters (µ̄j , Σ̄j) are updated as weighted averages:

µ̄j =

∑
i∈Cj

αiµi∑
i∈Cj

αi
, Σ̄j =

∑
i∈Cj

αiΣi∑
i∈Cj

αi
.

This mirrors k-means’ centroid update.

A.4 Algorithm Convergence

The following theorem guarantees convergence of the CTD sequence generated by Algorithm 1. In
the worst case, the algorithm requires exponentially many steps, but it typically converges in about 5
iterations. A full proof is given in Zhang et al. [17].
Theorem 1 (Convergence of the Algorithm). Suppose c(·, ·) is continuous, and for any ∆ > 0 and
ϕ⋆, the set {ϕ : c(ϕ∗, ϕ) ≤ ∆} is compact under some Gaussian space metric. Let {ϕ̄(t)

m } be the
sequence generated by the update step with initial {ᾱ(0)

j , µ̄
(0)
j , Σ̄

(0)
j }, and let T (t+1)

c be the CTD at
iteration t. Then:

1. There exists T and {ᾱ∗
j , µ̄

∗
j , Σ̄

∗
j} such that for all t ≥ T , {ᾱ(t)

j , µ̄
(t)
j , Σ̄

(t)
j } = {ᾱ∗

j , µ̄
∗
j , Σ̄

∗
j} and

T (t+1)
c = T (∗)

c , where T (∗)
c is the CTD between the original mixture and {ᾱ∗

j , µ̄
∗
j , Σ̄

∗
j}.

2. The limit point {ᾱ∗
j , µ̄

∗
j , Σ̄

∗
j} is a local minimum of Tc.

3. An MM-based exhaustive algorithm with O(mn) complexity solves (1).

B Experiment Steps and Complexity Analysis in More Detail

B.1 Detailed 3DGS Pipline

The advantages of 3DGS in rendering speed and image fidelity have made it applicable to a wide
range of tasks, including human reconstruction, AI-generated content, autonomous driving, and
beyond [36, 37, 38, 39]. Extensions to dynamic 3DGS, editable 3DGS, and surface representation
have further broadened its utility [40, 41, 42]. 3D Gaussian Splatting (3DGS) represents a scene as a
set of anisotropic 3D Gaussian primitives, each parameterized by its spatial location, shape, opacity,
and radiance. The pipeline consists of the following key steps:

1. Initialization. From Structure-from-Motion (SfM), obtain calibrated camera poses and a sparse
point cloud. Each point is initialized as a 3D Gaussian with an opacity αi:

ϕ(x;µi,Σi) = |2πΣ|−1
exp

(
−1

2
(x− µi)

T
Σ−1

i (x− µi)

)
,

where µi ∈ R3 is the position (mean), Σi ∈ R3×3 is the covariance matrix (anisotropic shape),
and αi ∈ [0, 1).

2. Projection & Rasterization. Each 3D Gaussian is projected to 2D using the camera model,

Σ′
i = JWΣiJW

T ,

where W is a veiw transformation matrix and J is the Jacobian of the projective transform.
Rasterization is done using a differentiable splatting approach which makes optimization possible.

3. Image Formation (Alpha Blending). The pixel color is computed via volumetric blending:

C =

N∑
i=1

Ti · αi · ci with Ti =

i−1∏
j=1

(1− αj) ,

where ci is the SH-predicted color of the i-th Gaussian in front-to-back order.
4. Optimization. The Gaussian parameters {µi,Σi, αi, ci} are optimized to minimize a photometric

loss:
L = (1− λ)

∥∥∥Ĉ −C⋆
∥∥∥
1
+ λ · LSSIM,

where Ĉ is the rendered image, C⋆ the ground truth, and λ ∈ [0, 1] balances the two loss terms.

22

5. Adaptive Densification & Pruning. During training, Gaussians are cloned (under-reconstruction)
or split (over-reconstruction) based on view-space gradient magnitude, and low-contribution
Gaussians are pruned.

B.2 Algorithm Complexity

For Algorithm 1, we discuss its computational cost for reducing n Gaussians to m Gaussians. The
assignment step requires computing pairwise distances between all n input Gaussians and m cluster
centers, resulting in a complexity of O(nm). The update step involves computing the barycenters.
Since the assignments are already known and the update for each cluster is linear in the number of
assigned Gaussians, this step has a complexity of O(n). The overall time complexity of Algorithm 1
is O(nm).

Our GHAP algorithm consists of two components: Geometric Compaction and Appearance Opti-
mization (fine-tuning). In this analysis, we focus only on the time complexity of the geometric
compaction stage. The KD-tree is constructed by recursively splitting the dataset along the me-
dian of a selected coordinate axis until a maximum depth d = ⌊log2(n/s)⌋ is reached. Let the
input size be n, and the time complexity of building the tree be T (n). This follows the recurrence:
T (n) = 2T (n/2) +O(n log2 n). The recursion terminates after d levels, yielding a total KD-tree
construction complexity of O(nd log2(n)). In the second step of geometric compaction, Algorithm 1
is applied independently within each KD-tree block with s Gaussians reduced to ρs Gaussians. Based
on our analysis in the previous paragraph, the per-block cost is O(ρs2). This along with the fact that
there are 2d = n/s blocks, the total complexity becomes: O

(
(n/s) · ρs2

)
= O (ρns) = O(ms).

Combining with the KD-tree construction cost, the total time complexity of the geometric compaction
step is O

(
n(d logn+mT/2d)

)
.

B.3 Detailed Experiments Steps

To ensure a fair comparison in our experiments, all methods undergo 30,000 total iterations under
consistent training conditions. MCMC uses 30K iterations of its own update process in [24]. For
other baselines, we summarize the backbone architecture, compaction methods, and fine-tuning steps
in the table below.

Method Backbone Compaction Fine-tune
(0-15k iterations) (15001th iteration) (150001-30K iterations)

3DGS a None d
3DGS+GHAP a Our compaction d
LightGaussian a LightGaussian compaction d
PUP-3DGS a PUP-3DGS compaction d
Trimming the FAT a Trimming the FAT compaction d
MesonGS a MesonGS compaction d
MiniSplatting b MiniSplatting compaction d
MiniSplatting-D+GHAP b b Our compaction d
LocoGS c LocoGS compaction d

a Vanilla 3DGS densification and pruning in [3].

b Mini-Splatting densification and pruning in [12].

c LocoGS 3DGS update in [33].

d 3DGS fine-tuning in [3].

Key implementation details:

• For compaction methods applicable to pre-trained models (e.g., LightGaussian, PUP-3DGS,
Trimming the FAT, MesonGS), we initialize from the same backbone model (trained using
vanilla 3DGS) and apply their respective compaction directly—excluding any compression
modules.

23

• All methods undergo identical fine-tuning (15k iterations) to achieve the target retention
ratio.

This standardized protocol ensures that performance differences stem solely from the methods
themselves, eliminating variations due to training procedures. All experiments are conducted on a
server with 256 GB RAM and a 96-core Intel Xeon Platinum 8255C CPU, and on a workstation
equipped with five NVIDIA RTX 3090 GPUs, each with 24 GB of VRAM.

C An Additional Comparison Experiments

As documented in prior work, 3DGS-MCMC [24] reinterpretes the 3D Gaussian Splatting (3DGS)
process through the lens of Markov Chain Monte Carlo (MCMC), thereby naturally exploring a
broader parameter space. In particular, it formulates pruning as a state transition within the MCMC
framework and incorporates L1 regularization, avoiding abrupt hard-threshold deletions and enabling
the natural removal of unnecessary Gaussian elements. Given these properties, a further comparative
analysis with 3DGS-MCMC is warranted.

To facilitate a fair comparison, we configured 3DGS-MCMC under two settings: one constrained to
300k Gaussians, and another initialized with 3000k Gaussians followed by compaction using our
method to reduce the count to 300k. Quantitative results on Tandt & Temples are summarized in the
table below. As evidenced by the results presented in the table, GHAP combined with 3DGS-MCMC

Method SSIM↑ PSNR↑ LPIPS↓
3DGS-MCMC-300k 0.813 22.925 0.239
3DGS-MCMC-3000k+GHAP 0.827 22.786 0.209

yields superior performance compared to the native 3DGS-MCMC approach constrained to 300k
Gaussians. This demonstrates the effectiveness of our method in accurately approximating the surface
geometry of 3DGS, highlighting the advantage of our compaction strategy.

D Ablation on Joint Geometry and Appearance Fine-tuning

In our configured compaction process, compaction was performed only once at the 15,001st iteration.
We conducted an ablation study on the timing of compaction to examine the impact of varying
compaction frequencies on the final outcome. Two alternative compaction strategies were considered:
the first involved compacting to 20% at the 15,001st iteration, followed by an additional 50%
compaction at the 20,001st iteration; the second strategy applied compaction of 40%, 50%, and 50%
at the 15,001st, 20,001st, and 25,001st iterations, respectively. All three strategies ultimately resulted
in a final retention rate of 10%. Experimental results, as presented in the table below, indicate that
jointly refining geometry and appearance over multiple stages does not lead to evidently improved
performance. Therefore, in practical applications, emphasis should be placed on executing appearance
optimization for as long as possible, rather than pursuing multi-stage compaction.

Compacting Iteration ρ SSIM↑ PSNR↑ LPIPS↓
15001 0.1 0.817 23.313 0.242

15001, 20001 0.2,0.5 0.817 23.44 0.247
15001, 20001, 25001 0.4,0.5,0.5 0.811 23.359 0.255

E Additional Numerical Results and Scene Visualizations

We report a more comprehensive set of results for the comparison experiments in Table 4, including
one different retention ratio: 20%. As shown in the updated results, our compaction method
significantly outperforms other methods either post-processing compression methods or end-to-end
methods.

24

In addition to the previously shown Figure 5, we present more detailed qualitative comparisons across
multiple scenes in Figure 8. Our method consistently preserves the visual quality of the original
models. In particular, when applied to stronger 3DGS variants with improved densification strategies,
such as Mini-Splatting-D, our compaction framework performs even better. This is reflected in the
fact that, after compaction, Mini-Splatting-D often achieves higher rendering quality than the original
3DGS baseline.

Table 4: We compared GHAP with four post-processing methods (LightGaussian, PUP-3DGS,
Trimming the Fat, MesonGS) at 20% retention, as well as two end-to-end methods (LocoGS,
3DGS-MCMC). GHAP also replaces the pruning in Mini-Splatting. Results show that our method
substantially outperforms both post-processing and end-to-end approaches.

Method
Tanks&Temples MipNeRF-360 Deep Blending

SSIM↑ PSNR↑ LPIPS↓ k Gaussians SSIM↑ PSNR↑ LPIPS↓ k Gaussians SSIM↑ PSNR↑ LPIPS↓ k Gaussians

original 3DGS 0.853 23.785 0.169 1577 0.813 27.554 0.221 2627 0.907 29.816 0.238 2475
LocoGS 0.843 23.655 0.191 571 0.798 27.049 0.257 674 0.903 29.972 0.261 529

3DGS+GHAP (ours) 0.835 23.615 0.212 314 0.788 26.973 0.275 527 0.907 29.864 0.252 496
LightGaussian-20% 0.779 22.486 0.271 315 0.765 26.353 0.288 526 0.873 28.011 0.315 495
PUP-3DGS-20% 0.809 22.603 0.228 315 0.790 26.671 0.257 525 0.905 29.719 0.248 495
Trimming the Fat-20% 0.819 22.498 0.232 315 0.781 26.494 0.280 524 0.900 29.082 0.272 494
MesonGS-20% 0.822 20.699 0.207 314 0.776 25.006 0.262 527 0.897 28.696 0.262 496
3DGS-MCMC 0.779 22.141 0.282 315 0.763 25.957 0.309 263 0.885 28.976 0.298 496

MiniSplatting-20% 0.824 22.953 0.223 142 0.794 26.728 0.267 215 0.904 29.763 0.265 240
MiniSplatting+GHAP (ours) 0.855 23.403 0.171 155 0.821 27.310 0.214 219 0.912 30.170 0.238 250

25

2

Tr
uc

k

+Compact (! = 0.1)3DGS Mini-Splatting-D +Compact (! = 0.1)
Atom

+Compact (! = 0.1)

kit
ch

en
bo

ns
ai

Atom

bic
yc

le
co

un
te

r
flo

wer
ga

rd
en

ro
om

stu
m

p
tre

eh
ill

Pla
yr

oo
m

dr
jo

hn
so

n
tra

in

Figure 8: More scenes visualization. Visual comparisons across additional scenes before and after
compaction.

26

	Introduction
	Related Works
	Method: Gaussian Herding across Pens
	Probabilistic Scene Representation
	Compaction via Optimal Transport
	Geometric Compaction via GMR
	Appearance Optimization

	Training Details with GHAP Algorithm

	Experiments
	Experimental Setup
	Quantitative Results
	Ablation Studies

	Conclusion and Discussion
	More Details about the Blockwise GMR Compaction
	Introduction to Optimal Transport (OT)
	Relationship Between Composite Transportation Divergence and OT
	Algorithm Intuition
	Algorithm Convergence

	Experiment Steps and Complexity Analysis in More Detail
	Detailed 3DGS Pipline
	Algorithm Complexity
	Detailed Experiments Steps

	An Additional Comparison Experiments
	Ablation on Joint Geometry and Appearance Fine-tuning
	Additional Numerical Results and Scene Visualizations

